VP

Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức: P= a^2/ a^4 + a^2 + 1

NL
16 tháng 4 2022 lúc 1:14

\(\left\{{}\begin{matrix}a^2\ge0\\a^4+a^2+1>0\end{matrix}\right.\) ;\(\forall a\Rightarrow P=\dfrac{a^2}{a^4+a^2+1}\ge0\)

\(P_{min}=0\) khi \(a=0\)

\(P=\dfrac{3a^2}{3\left(a^4+a^2+1\right)}=\dfrac{a^4+a^2+1-\left(a^4-2a^2+1\right)}{3\left(a^4+a^2+1\right)}=\dfrac{1}{3}-\dfrac{\left(a^2-1\right)^2}{3\left(a^4+a^2+1\right)}\le\dfrac{1}{3}\)

\(P_{max}=\dfrac{1}{3}\) khi \(a^2=1\Rightarrow a=\pm1\)

Bình luận (0)
XO
16 tháng 4 2022 lúc 6:14

Ta có  \(3P=\dfrac{3a^2}{a^4+a^2+1}=\dfrac{-a^4+2a^2-1+a^4+a^2+1}{a^4+a^2+1}=1-\dfrac{\left(a^2-1\right)^2}{a^4+a^2+1}\le1\)\(\Rightarrow P\le\dfrac{1}{3}\)

Dấu "=" xảy ra <=> a2 - 1 = 0 <=> a = \(\pm1\)

Vậy Max P = 1/3 khi a = \(\pm1\)

+) Dễ thấy \(P=\dfrac{a^2}{a^4+a^2+1}\ge0\) ("=" khi a = 0) 

Vậy \(0\le P\le\dfrac{1}{3}\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
AA
Xem chi tiết
ND
Xem chi tiết
TN
Xem chi tiết
DT
Xem chi tiết
KS
Xem chi tiết
HH
Xem chi tiết
CM
Xem chi tiết
TQ
Xem chi tiết