ĐKXĐ: \(\left\{{}\begin{matrix}0\le x\le9\\-x^2+9x+m\ge0\end{matrix}\right.\)
BPT tương đương:
\(9+2\sqrt{-x^2+9x}\ge-x^2+9x+m\)
\(\Leftrightarrow x^2-9x+2\sqrt{-x^2+9x}+9\ge m\)
Đặt \(\sqrt{-x^2+9x}=t\Rightarrow0\le t\le\frac{9}{2}\)
\(\Rightarrow f\left(t\right)=-t^2+2t+9\ge m\)
Để BPT có nghiệm thực \(\Rightarrow m\le\max\limits_{\left[0;\frac{9}{2}\right]}f\left(t\right)\)
\(-\frac{b}{2a}=1\in\left[0;\frac{9}{2}\right]\) ; \(f\left(0\right)=9\) ; \(f\left(1\right)=10\) ; \(f\left(\frac{9}{2}\right)=-\frac{9}{4}\)
\(\Rightarrow\max\limits_{\left[0;\frac{9}{2}\right]}f\left(t\right)=f\left(1\right)=10\Rightarrow m\le10\)
\(\Rightarrow m_{max}=10\)