Violympic toán 9

NS

Cho biểu thức P = \(\left(\dfrac{4a}{\sqrt{a}-1}-\dfrac{\sqrt{a}}{a-\sqrt{a}}\right).\dfrac{\sqrt{a}-1}{a^2}\) với a>0 và a \(\ne\)1

a)Rút gọn biểu thức P                        b)Với giá trị nào của a thì P = 3

NT
22 tháng 9 2021 lúc 21:40

a: Ta có: \(P=\left(\dfrac{4a}{\sqrt{a}-1}-\dfrac{\sqrt{a}}{a-\sqrt{a}}\right)\cdot\dfrac{\sqrt{a}-1}{a^2}\)

\(=\dfrac{4a-1}{\sqrt{a}-1}\cdot\dfrac{\sqrt{a}-1}{a^2}\)

\(=\dfrac{4a-1}{a^2}\)

b: Để P=3 thì \(4a-1=3a^2\)

\(\Leftrightarrow3a^2-4a+1=0\)

\(\Leftrightarrow\left(3a-1\right)\left(a-1\right)=0\)

hay \(a=\dfrac{1}{9}\)

Bình luận (0)
EC
22 tháng 9 2021 lúc 21:44

a) ĐK: a>0; a≠1 

Ta có: \(P=\left(\dfrac{4a}{\sqrt{a}-1}-\dfrac{\sqrt{a}}{a-\sqrt{a}}\right).\dfrac{\sqrt{a}-1}{a^2}\)

                  \(=\left(\dfrac{4a}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}-1}\right).\dfrac{\sqrt{a}-1}{a^2}\)

                  \(=\dfrac{4a-1}{\sqrt{a}-1}.\dfrac{\sqrt{a}-1}{a^2}=\dfrac{4a-1}{a^2}\)

b) Ta có: \(P=3\Leftrightarrow\dfrac{4a-1}{a^2}=3\Leftrightarrow3a^2=4a-1\Leftrightarrow3a^2-4a+1=0\)

               \(\Leftrightarrow\left(a-1\right)\left(3a-1\right)=0\)

               \(\Leftrightarrow\left[{}\begin{matrix}a=1\left(loại\right)\\a=\dfrac{1}{3}\left(tm\right)\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
NS
Xem chi tiết
BB
Xem chi tiết
NS
Xem chi tiết
NS
Xem chi tiết
KG
Xem chi tiết
NS
Xem chi tiết
NS
Xem chi tiết
NS
Xem chi tiết
JM
Xem chi tiết