Violympic toán 9

NN

a.Cho \(-\dfrac{5}{3}\le x\le\dfrac{5}{3};x\ne0\)\(\sqrt{5+3x}-\sqrt{5-3x}=a\)

Tính giá trị của biểu thức P=\(\dfrac{\sqrt{10+2\sqrt{25-9x^2}}}{x}\) theo a

b.cho x,y,z>0 và x+y+z=12.Tìm GTLN của biểu thức

M=\(\left(\dfrac{2x+y+z-15}{x}\right)+\left(\dfrac{x+2y+z-15}{y}\right)+\left(\dfrac{x+y+2z-24}{z}\right)\)

DD
8 tháng 1 2019 lúc 18:38

Câu a :

Ta có : \(\sqrt{5+3x}-\sqrt{5-3x}=a\)

\(\Leftrightarrow\left(\sqrt{5+3x}-\sqrt{5-3x}\right)^2=a^2\)

\(\Leftrightarrow5+3x-2\sqrt{\left(5+3x\right)\left(5-3x\right)}+5-3x=a^2\)

\(\Leftrightarrow10-2\sqrt{25-9x^2}=a^2\)

\(\Leftrightarrow2\sqrt{25-9x^2}=10-a^2\)

\(\Leftrightarrow\sqrt{25-9x^2}=\dfrac{10-a^2}{2}\)

\(\Leftrightarrow25-9x^2=\dfrac{\left(a^2-10\right)^2}{2}\)

\(\Leftrightarrow9x^2=25-\dfrac{\left(a^2-10\right)^2}{2}\)

\(\Leftrightarrow3x=\sqrt{\dfrac{50-\left(a^2-10\right)^2}{2}}\)

\(\Leftrightarrow x=\dfrac{\sqrt{50-\left(a^2-10\right)^2}}{3\sqrt{2}}\)

\(P=\dfrac{3\sqrt{2}.\sqrt{10+2\sqrt{\dfrac{10-a^2}{2}}}}{\sqrt{50-\left(a^2-10\right)^2}}\)

Bạn tự rút gọn nữa nhé :))

Câu b : \(M=\dfrac{2x+y+z-15}{x}+\dfrac{x+2y+z-15}{y}+\dfrac{x+y+2z-24}{z}\)

\(=\dfrac{x-3}{x}+\dfrac{y-3}{y}+\dfrac{z-12}{z}\)

\(=3-3\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{4}{z}\right)\le3-3\left[\dfrac{\left(1+1+2\right)^2}{12}\right]=-1\)

Bình luận (0)

Các câu hỏi tương tự
LA
Xem chi tiết
PN
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
BA
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
AG
Xem chi tiết