WS

Tìm giá trị lớn nhất của biểu thức A = \(-2x^2-10y^2+4xy+4x+4y+2016\)

YN
20 tháng 10 2021 lúc 19:18

\(A=-2x^2-10y^2+4xy+4x+4y+2016\)

\(=-2.\left(x^2+5y^2-4xy-4x-4y\right)+2016\)

\(=-2.\left(x^2+4y^2+4-4xy-4x+8y+y^2-12y+36\right)+2.36+2016\)

\(=-2.[\left(x-2y-2\right)^2+\left(y-6\right)^2]+2088\)

Ta có: \(\left(x-2y-2\right)^2+\left(y-6\right)^2\ge0\)

\(\Rightarrow-2.[\left(x-2y-2\right)^2+\left(y-6\right)^2]\le0\)

\(\Rightarrow-2.[\left(x-2y-2\right)^2+\left(y-6\right)^2]+2088\le2088\)

\(\Rightarrow A\le2088\)

Vậy giá trị lớn nhất của \(A=2088\) khi: \(\hept{\begin{cases}x-2y-2=0\\y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=2y+2\\y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=14\\y=6\end{cases}}\)

Bình luận (1)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
DT
Xem chi tiết
HH
Xem chi tiết
NH
Xem chi tiết
ND
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
HL
Xem chi tiết