Tính đạo hàm của các hàm số sau:
a) y=\(\dfrac{3x^2-18x-2}{1-2x}-\dfrac{2x-3}{x+4}\)
b) y=\(-\dfrac{\sin x}{3\cos^3x}+\dfrac{4}{3}\tan x\)
\(y=\dfrac{1}{\left(x^2-2x+5\right)^2}\)
y=2sin3xcos5x
\(y=\left(1+\sqrt{1-2x}\right)^3\)
\(y=x^2\sin\left(3x-1\right)\)
\(y=\dfrac{\sin x+\cos x}{\sin x-\cos x}\)
Tính đạo hàm :
a) y = ( 2x - 3 )4
b) y = cos5 3x
c) y = \(\sqrt{cos\left(1-2x^2\right)}\)
d) y = \(\sqrt{\frac{x+1}{x-1}}\)
e) y = ( 1 + sin2x )4
Tìm đạo hàm của các hàm số sau :
a) \(y=x\cot^2x\)
b) \(y=\dfrac{\sin\sqrt{x}}{\cos3x}\)
c) \(y=\left(\sin2x+8\right)^3\)
d) \(y=\left(2x^3-5\right)\tan x\)
Tìm đạo hàm của các hàm số sau :
a) \(y=\dfrac{x^3}{3}-\dfrac{x^2}{2}+x-5\)
b) \(y=\dfrac{2}{x}-\dfrac{4}{x^2}+\dfrac{5}{x^3}-\dfrac{6}{7x^4}\)
c) \(y=\dfrac{3x^2-6x+7}{4x}\)
d) \(y=\left(\dfrac{2}{x}+3x\right)\left(\sqrt{3}-1\right)\)
e) \(y=\dfrac{1+\sqrt{x}}{1-\sqrt{x}}\)
f) \(y=\dfrac{-x^2+7x+5}{x^2-3x}\)
Tính đạo hàm các hàm số:
1.y = ex sinx + x2 cosx
2.y = cot (\(\dfrac{1}{1+X^2}\) )
3.y = \(\dfrac{\sqrt{1+x^2}+\sqrt{1-x^2}}{\sqrt{1+x^2}-\sqrt{1-x^2}}\)
Giải phương trình \(f'\left(x\right)=g\left(x\right)\) biết :
a) \(f\left(x\right)=\dfrac{1-\cos3x}{3};g\left(x\right)=\left(\cos6x-1\right)\cot3x\)
b) \(f\left(x\right)=\dfrac{1}{2}\cos2x;g\left(x\right)=1-\left(\cos3x+\sin3x\right)^2\)
c) \(f\left(x\right)=\dfrac{1}{2}\sin2x+5\cos x;g\left(x\right)=3\sin^2x+\dfrac{3}{1+\tan^2x}\)
Cho \(f_1\left(x\right)=\dfrac{\cos x}{x};f_2\left(x\right)=x\sin x\)
Tính \(\dfrac{f'_1\left(1\right)}{f'_2\left(1\right)}\) ?
Cho các hàm số :
\(f\left(x\right)=x^3+bx^2+cx+d\) (C)
\(g\left(x\right)=x^2-3x-1\)
a) Xác định b, c, d sao cho đồ thị (C) đi qua các điểm \(\left(1;-3\right);\left(-1;-3\right);f'\left(\dfrac{1}{3}\right)=\dfrac{5}{3}\)
b) Viết phương trình tiếp tuyến của (C) tại điểm có hoành độ \(x_o=1\)
c) Giải phương trình \(f"\left(\cos t\right)=g'\left(\sin t\right)\)
d) Tìm giới hạn \(\lim\limits_{z\rightarrow0}\dfrac{f"\left(\sin5z\right)+2}{g'\left(\sin3z\right)+3}\)