x-3√x = 0
⇒√x2-3√x=0
⇒√x(√x-3)=0
⇒ hoặc √x=0⇒x=0
hoặc √x-3=0 ⇒√x=3 ⇒ x=+-√3
vậy x={0;-√3;√3}
Ta có: \(x-3\sqrt{x}=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=9\end{matrix}\right.\)
x-3√x = 0
⇒√x2-3√x=0
⇒√x(√x-3)=0
⇒ hoặc √x=0⇒x=0
hoặc √x-3=0 ⇒√x=3 ⇒ x=+-√3
vậy x={0;-√3;√3}
Ta có: \(x-3\sqrt{x}=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=9\end{matrix}\right.\)
a) Tìm x,y biết : I x+y-2I + I x-y-2I < hoặc = 0
b) Tìm x,y,z biết: z-15y/3 =15x-3z/8 =3y-8x/15 và 2x-y+z =13
c) Tìm số nguyên x, biết: x+ (x+1) +(x+2) +...+ 2017 =0. Biết vế trái là tổng các số nguyên liên tiếp
e) Tìm x biết: x-1/2017 + x-2/2016 - x-3/2015 = x-4/2014
f) Tìm x nguyên để
\(\sqrt{x+1}\) chia hết cho \(\sqrt{x-3}\)
1.Tìm các số x, y, z thỏa mãn đẳng thức\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|=0\)
2.Tìm x,y,z biết : \(x+y=x\div y=3\left(x-y\right)\)
1. Tìm x, biết:
a) \(9^{x-1}=\frac{1}{9}\)
b) \(\frac{1}{3}:\sqrt{7-3x^2}=\frac{2}{15}\)
2. Tìm các số x,y,z thỏa mãn:
\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|=0\)
Tìm các số x,y,z thỏa mãn đẳng thức:\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|=0\)| = 0
Tìm x,y,z biết
\(\sqrt{\left(x+3\cdot\sqrt{5}\right)^2}+\sqrt{\left(y-3\cdot\sqrt{5}\right)^2}+|x+y+z|=0\)
Tìm tất cả các số tự nhiên x, y, z thỏa mãn:
\(\sqrt{x+4\sqrt{3}}=\sqrt{y}+\sqrt{z}\)
Tìm x, y, z biết:\(\sqrt{\left(x-2024\right)^2}\) + ∣ x+ y -4z ∣ + \(\sqrt{5y^2}\) = 0 với x,y,z ϵ R
Tìm các số x;y;z thỏa mãn đẳng thức
\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+|x+y+z|=0.\)
tìm các số x,y,z thỏa mãn đẳng thức:
\(\sqrt{\left(x-\sqrt{2}\right)^2}\)+\(\sqrt{\left(y+\sqrt{2}\right)^2}\)+\(|x+y+z|\)=0