MT

Tìm các số thực x,y,z thỏa mãn (x−1)2 +|3y−1|+|z+2| = 0.

Hãy giúp mk.TKS mn

H24
26 tháng 7 2021 lúc 17:47

`(x-1)^2>=0`

`|3y-1|>=0`

`|z+2|>=0`

`=>(x-1)^2+|3y-1|+|z+2|>=0`

Mà đề bài cho =0

`=>{(x-1=0),(3y-1=0),(z+2=0):}`

`=>{(x=1),(y=1/3),(z=-2):}`

Vậy `x=1` và `y=1/3` và `z=-2`

Bình luận (1)
NT
26 tháng 7 2021 lúc 22:02

Ta có: \(\left(x-1\right)^2\ge0\forall x\)

\(\left|3y-1\right|\ge0\forall y\)

\(\left|z+2\right|\ge0\forall z\)

Do đó: \(\left(x-1\right)^2+\left|3y-1\right|+\left|z+2\right|\ge0\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-1=0\\3y-1=0\\z+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{1}{3}\\z=-2\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
LT
Xem chi tiết
DK
Xem chi tiết
IS
Xem chi tiết
DF
Xem chi tiết
YS
Xem chi tiết
H24
Xem chi tiết
Xem chi tiết
PN
Xem chi tiết
PV
Xem chi tiết