OF

Tìm các số nguyên x và y thỏa mãn \(y=\frac{2x+1}{x^2-3}\)

H24
25 tháng 4 2018 lúc 23:08

a+b=c+d => a=c+d-b 

thay vào ab+1=cd 

=> (c+d-b)*b+1=cd 

<=> cb+db-cd+1-b^2=0 

<=> b(c-b)-d(c-b)+1=0 

<=> (b-d)(c-b)=-1 

a,b,c,d,nguyên nên (b-d) và (c-b) nguyên 

mà (b-d)(c-b)=-1 nên có 2 TH: 

TH1: b-d=-1 và c-b=1 

<=> d=b+1 và c=b+1 

=> c=d 

TH2: b-d=1 và c-b=-1 

<=> d=b-1 và c=b-1 

=> c=d 

Vậy từ 2 TH ta có c=d.

Bình luận (0)
H24
25 tháng 4 2018 lúc 23:03

a+b=c+d => a=c+d-b 

thay vào ab+1=cd 

=> (c+d-b)*b+1=cd 

<=> cb+db-cd+1-b^2=0 

<=> b(c-b)-d(c-b)+1=0 

<=> (b-d)(c-b)=-1 

a,b,c,d,nguyên nên (b-d) và (c-b) nguyên 

mà (b-d)(c-b)=-1 nên có 2 TH: 

TH1: b-d=-1 và c-b=1 

<=> d=b+1 và c=b+1 

=> c=d 

TH2: b-d=1 và c-b=-1 

<=> d=b-1 và c=b-1 

=> c=d 

Vậy từ 2 TH ta có c=d.

Bình luận (0)
H24
25 tháng 4 2018 lúc 23:03

a+b=c+d => a=c+d-b 

thay vào ab+1=cd 

=> (c+d-b)*b+1=cd 

<=> cb+db-cd+1-b^2=0 

<=> b(c-b)-d(c-b)+1=0 

<=> (b-d)(c-b)=-1 

a,b,c,d,nguyên nên (b-d) và (c-b) nguyên 

mà (b-d)(c-b)=-1 nên có 2 TH: 

TH1: b-d=-1 và c-b=1 

<=> d=b+1 và c=b+1 

=> c=d 

TH2: b-d=1 và c-b=-1 

<=> d=b-1 và c=b-1 

=> c=d 

Vậy từ 2 TH ta có c=d.

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
NH
Xem chi tiết
LQ
Xem chi tiết
PH
Xem chi tiết
LP
Xem chi tiết
CK
Xem chi tiết
PM
Xem chi tiết
KY
Xem chi tiết
NH
Xem chi tiết