HT

Tìm các số nguyên m,n thỏa mãn \(m\left(m+1\right)\left(m+2\right)=n^2\)

NL
20 tháng 3 2022 lúc 21:32

- Với \(m=\left\{-2;-1;0\right\}\Rightarrow n=0\)

- Với \(m< -2\Rightarrow m\left(m+1\right)\left(m+2\right)< 0\) (ktm)

- Với \(m>0\):

\(m\left(m+1\right)\left(m+2\right)=\left(m+1\right)\left(m^2+2m\right)\)

Gọi \(d=ƯC\left(m+1;m^2+2m\right)\)

\(\Rightarrow\left(m+1\right)\left(m+1\right)-\left(m^2+2m\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Mà \(\left(m+1\right)\left(m^2+2m\right)=n^2\Rightarrow\left\{{}\begin{matrix}m+1=a^2\\m^2+2m=b^2\end{matrix}\right.\)

Từ \(m^2+2m=b^2\Rightarrow\left(m+1\right)^2-b^2=1\)

\(\Rightarrow\left(m+1-b\right)\left(m+1+b\right)=1\)

Tới đây chắc dễ rồi

Bình luận (0)

Các câu hỏi tương tự
ND
Xem chi tiết
NN
Xem chi tiết
EA
Xem chi tiết
TM
Xem chi tiết
H24
Xem chi tiết
DB
Xem chi tiết
NS
Xem chi tiết
PG
Xem chi tiết
LQ
Xem chi tiết