§5. Dấu của tam thức bậc hai

SK

 

Tìm các giá trị của tham số m để các bất phương trình sau nghiệm đúng với mọi \(x\) :

a) \(5x^2-x+m>0\)

b) \(mx^2-10x-5< 0\)

H24
7 tháng 4 2017 lúc 10:26

 

a)

Để \(5x^2-x+m>0\) thì:

\(\Delta< 0\Rightarrow1-20m< 0\Rightarrow m>\dfrac{1}{20}\)

b)

\(mx^2-10x-5< 0\)

Xét \(m=0\) ta có: \(-10x-5< 0\)\(\Leftrightarrow x>\dfrac{1}{2}\) (loại)
Xét \(m\ne0\). Theo định lý về dấu tam thức bậc hai:
\(mx^2-10x-5< 0\)\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\25+5m< 0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\m< -5\end{matrix}\right.\)\(\Leftrightarrow m< -5\).
Vậy với \(m< -5\) thì \(mx^2-10x-5< 0\).

Bình luận (0)

Các câu hỏi tương tự
SK
Xem chi tiết
TN
Xem chi tiết
NV
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết