Đặt \(\overline{abcd}=k^2\left(k\in N\right)\)
\(\Rightarrow\hept{\begin{cases}ab-cd=1\\32\le k\le100\end{cases}\Rightarrow101cd=k^2-100}\)\(=\left(k-10\right)\left(k+10\right)\)
\(\Rightarrow k+10⋮100\)hoặc \(k-10⋮100\)
Mà \(\left(k-10;101\right)=1\Rightarrow k+10⋮101\)
\(32\le k\le100\Rightarrow42\le k+10\le110\)
\(\Rightarrow k+10=101\)
\(\Rightarrow k=101-10=91\)
\(\Rightarrow\overline{abcd}=91^2=8281\)
vì sao suy ra được 101cd = k2 -100??? 101cd ở đâu ra ạ?
bảo bình dễ thương
vì ta có abcd = 100ab + cd = 100.[ cd +1] +cd =100cd + 100+cd =101cd +100=k^2
suy ra 101cd =k^2 -100