H24

Thực hiện phép tính:

\(\left(1+\dfrac{1}{1.3}\right)+\left(1+\dfrac{1}{2.4}\right)+\left(1+\dfrac{1}{3.5}\right)+...+\left(1+\dfrac{1}{2019.2021}\right)\)

NT
16 tháng 6 2023 lúc 20:29

Sửa đề: A=(1+1/1*3)(1+1/2*4)*...*(1+1/2019*2021)

\(=\dfrac{2^2}{\left(2-1\right)\left(2+1\right)}\cdot\dfrac{3^2}{\left(3-1\right)\left(3+1\right)}\cdot...\cdot\dfrac{2020^2}{\left(2020-1\right)\left(2020+1\right)}\)

\(=\dfrac{2}{1}\cdot\dfrac{3}{2}\cdot...\cdot\dfrac{2020}{2019}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{2020}{2021}=2020\cdot\dfrac{2}{2021}=\dfrac{4040}{2021}\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
KN
Xem chi tiết
KN
Xem chi tiết
ND
Xem chi tiết
NA
Xem chi tiết
LA
Xem chi tiết
QN
Xem chi tiết
KP
Xem chi tiết
NA
Xem chi tiết