a: =>x>=0 và x^2+x=x^2
=>x=0
b: =>x>=2 và x^2-4x-3=x^2-4x+4
=>-3=4(loại)
\(a)ĐK:x\ge0\)
\(pt\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x^2+x=x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x=0\left(tm\right)\end{matrix}\right.\)
Vậy, pt có nghiệm duy nhất là x=0
\(b)ĐK:x\ge2+\sqrt{7}\)
\(pt\Leftrightarrow\left\{{}\begin{matrix}x-2\ge0\\x^2-4x-3=(x-2)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x^2-4x-3=x^2-4x+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\-3=4\end{matrix}\right.\)(vô lý)
Vậy pt vô nghiệm