cho tam giác ABC vuông tại A (AB<AC).Kẻ AH vuông góc với BC tại H.Gọi D,E lần lượt là hình chiếu cảu H trên AB,AC
a) biết AB=6cm, HC=6,3cm , tính BC,AC
b) chứng minh \(de^3=BC.BD.CE\)
C) Đường thẳng kẻ qua B vuông góc của BC cắt HD tại M , đường thẳng kẻ qua C vuông góc với BC cắt HE tại N. Chứng minh rằng M,A,N thẳng hàng
cho đường tròn (O;R), đường kính AB. gọi C là điểm thuộc đường tròn (O) sao cho AC> BC
a) Kẻ OH vuông góc với AC tại H, đường thẳng vuông góc với OC tại C cắt tia OH tại D. cm: 4OH.HD=AC2
b) qua O kẻ đường thẳng vuông góc với BD tại K, cắt tia AC tại M. cm: MB vuông góc với AB tại B
cho tam giác ABC vuông tại A (AB<AC) kẻ AH vuông góc với BC gọi D,E lần lượt là hình chiếu của H trên AB và AC a) biết AB=6cm, HC=6,4cm.tính BC,AC b) chứng minh: DE^3=BC.BD.CE c) đường thẳng qua B vuông góc với BC cắt HD tại M. đường thẳng qua C vuông góc với BC cắt HE tại N.chứng minh: M,A,N thẳng hàng
Cho tam giác abc vuông tại A (AB<AC), đường cao AH . Kẻ HD,HE lần lượt vuông góc với AB,AC.Đường thẳng qua A vuông góc với DE cắt BC tại I
a,CM:I là trung điểm của BC
b,Kẻ đường thẳng vuông góc với AI tại A cắt đường thẳng BD tại K.CM AB là tia phân giác của góc KAH
c,CM AD>BD + AE>EC \(\le AI^2\)
cho tam giác ABC vuông tại A.Kẻ AH vuông góc với BC(H thuộc BC).M là trung điểm của AB.a)Gỉa sử AB=17cm,góc C=62 độ.tính AC,CM.b)Qua B kẻ đường thẳng vuông góc với CM,đường thẳng này cắt CM tại K và cắt đường thẳng tại N.chứng minh rằng:BK.BN=AB^2.c)kẻ MP vuông góc BC(P thuộc BC).chứng minh rằng 1/AB^2+1/AC^2=1/4MP^2
Từ điểm A nằm ngoài đường tròn (o), vẽ 2 tiếp tuyến AB và AC đến đường tròn (o), (B,C là tiếp điểm). Qua O, kẻ đường thẳng m vuông góc với OC, qua A, kẻ đường thẳng n vuông góc với AC, 2 đường thẳng m và n cắt nhau tại D. OA cắt BC tại H.
Gọi M,N lần lượt là trung điểm OD, AH. Chứng minh MN vuông góc CN
Cho ABC nhọn nội tiếp đường tròn tâm O. Đường thẳng vuông góc với AB tại B cắt đường thẳng vuông góc với AC tại C ở D. Gọi H là trực tâm tam giác ABC, đường thẳng AH và BC cắt nhau tại Q. Đường thẳng qua H song song với BC cắt AC và AB lần lượt H tại E và F. Đường thẳng DE cắt đường tròn (O) tại giao điểm thứ hai là P. Gọi J là giao điểm của AD và BP. Chứng minh B,H,P thẳng hàng và FJD vuông
Cho tam giác ABC có(AB<AC) nội tiếp (O) có BC là đường kính, kẻ dây AD vuông góc BC tại I,tia DB cắt tia CA tại E qua E kẻ đường thẳng vuông góc BC tại H, cắt tia AB tại F. chứng minh
a) tam giác abd cân
b)H,E,A,B cùng thuộc một đường tròn
c)tam giác HAF cân
d) B cách đều 3 cạnh tam giác HAD
HELPPPPPPPPPPPP
Cho tam giác ABC vuông tại A, vẽ đường tròn tâm O đường kính AC. Qua C kẻ tiếp tuyến d với đường tròn tâm O. Kẻ OD vuông góc với BC (D thuộc BC ), đường thẳng OD cắt đường thẳng d tại E và cắt đường thẳng AB tại F. Gọi I là giao điểm của AE và BO
1) Chứng minh AE vuông góc với BO
2) Chứng minh AI.AE =2OD.OF