Tam giác MNP vuông cân tại N
Tam giác MNP vuông cân tại N
Cho tam giác MNP vuông tại M có MN = 6 cm ,MP=8cm khi đó NP bằng:
a 🔼MNP vuông tại M b 🔼MNP vuông tại P
c 🔼MNP vuông tại N d 🔼MNP cân tại P
1. Cho tam giác MNP cân tại M vẽ MH thuộc NP (H thuộc NP)
a) Chứng minh NH = PH
b) Cho MH = 4 cm; NH = 3 cm. Tính MN
2. Cho tam giác MNP vuông tại M, có góc N = 60o và MN = 5 cm. Tia phân giác của góc N cắt MP tại D. Kẻ DE vuông góc với PN tại E
a) Chứng minh: tam giác MNP = tam giác END
b) Chứng minh: tam giác MNE là tam giác đều
c) Tính độ dài cạnh PN
3. Cho tam giác MNP cân tại M, góc M = 30o; NP = 2 cm. Trên cạnh MP lấy điểm Q sao cho góc PNQ = 60o. Tính độ dài MQ
Cho tam giác MNP có I là trung điểm NP. MI là phân giác, G là trọng tâm của tam giác MNP. NK vuông góc với MP tại K. O là giao điểm của NK và MI.
a) Chứng minh tam giác MNP cân tại M
b) NP= 16, MG= 4. Tính MI và MN
c) CO vuông góc với MN
Cho tam giác MNP vuông tại M (MN<MP). Trên NP lấy Q sao cho NM=NQ. Qua Q, kẻ d vuông góc với NP, d cắt MP tại R.
a)Nếu góc MNP=2MPN. Tính số đo 2 góc đó?
b)CM: Tam giác MNR= tam giác QNR, từ đó suy ra NR là phân giác của góc MNP
c)Trên tia đối của tia MN,lấy K sao cho MK=MN.
CM: Tam giác PNK cân
Cho tam giác MNP vuông tại M (MN<MP). Trên NP lấy Q sao cho NM=NQ. Qua Q, kẻ d vuông góc với NP, d cắt MP tại R.
a)Nếu góc MNP=2MPN. Tính số đo 2 góc đó?
b)CM: Tam giác MNR= tam giác QNR, từ đó suy ra NR là phân giác của góc MNP
c)Trên tia đối của tia MN,lấy K sao cho MK=MN.
CM: Tam giác PNK cân
Cho tam giác MNP cân tại M , vẽ MH vuông góc với NP
a ) Chứng minh : Tam giác MHN = Tam giác MHP
b ) Chứng minh MH là phân giác của tam giác MNP
c ) Tính MH nếu MN = 10 cm , NP = 12 cm
d ) Vẽ đường thẳng vuông góc với MN tại N và đường thẳng vuông góc với MP tại P , hai đường thẳng này cắt nhau tại K . Chứng minh M , K , H thẳng hàng .
cho tam giác mnp vuông tại m , góc mnp=60 độ , trên cạnh np lấy d sao chonm=nd. từ d kẻ đường thẳng vuông gác vs np ,cắt mp tại a.
a)cmr: nalaf tia phân giác của góc mnp.
b) tam giác nap là tam giác gì? vì sao.
c)tam giác nap cân tại a cà d là tung điểm của np
Cho tam giác MNP cân tại M, MI là đường phân giác (I thuộc NP) a) chứng minh tam giác MIN=tam giác MIP b) kẻ EI vuông góc MN tại E , IF vuông góc MP tại F .chứng minh tam giác MEF cân
Cho tam giác MNP vuông cân tại M có NP= căn bậc 2 của 32 cm, khi đó độ dài cạnh MN bằng: