Có 5 đoạn thẳng có độ dài lần lượt là 1cm, 2cm, 3cm, 4cm, 5cm. Lấy ngẫu nhiên ra 3 đoạn thẳng, tính xác suất để 3 đoạn thẳng được chọn ra là độ dài 3 cạnh của 1 tam giác.
A. 3 5 .
B. 2 5 .
C. 3 10 .
D. 1 10 .
Một tam giác có chu vi là 60 cm. Các đường cao có độ dài là 12 cm; 15 cm; 20 cm. Vậy các cạnh tương ứng có độ dài lần lượt (tính theo cm) là ...
Cho đồ thị hàm số y = 1 3 x 4 - 2 x 2 - 1 có ba điểm cực trị là A, B, C. Biết M, N là hai điểm di động lần lượt thuộc các cạnh AB, AC sao cho diện tích tam giác ABC gấp ba lần diện tích tam giác AMN. Giá trị nhỏ nhất của độ dài đoạn thẳng MN là
A.. 2 3
B. 2 3 3
C. 4
D. 2
Cho lăng trụ tam giác ABC.A′B′C′ có độ dài cạnh bên bằng 4 và khoảng cách từ điểm A đến các đường thẳng BB′,CC′ lần lượt bằng 1 và 2. Biết góc giữa hai mặt phẳng (ABB′A′) và (ACC′A′) bằng 60 ° . Tính thể tích khối lăng trụ ABC.A′B′C′.
A. 4 3
B. 3
C. 3 3
D. 2 3
Cho tứ giác ABCD. Trên các cạnh AB,BC,CA,AD lần lượt lấy 3; 4; 5; 6 điểm phân biệt khác các điểm A, B, C, D. Số tam giác phân biệt có các đỉnh là các điểm vừa lấy là
A. 781
B. 624
C. 816
D. 342
a) Cho tam giác ABC có C(-1;-2) đường trung tuyến kẻ từ A và đường cao kẻ từ B lần lượt có phương trình 5x+y-9=0 và x+3y-5=0. Tìm tọa độ A, B
b) Cho đường thẳng a: x-2y-3=0 và b: x+y+1=0. Tìm tọa độ điểm M trên a sao cho khoảng cách từ M đến b là 1/ căn 2
Hình hộp chữ nhật có độ dài ba cạnh xuất phát từ một đỉnh lần lượt là 3, 4, 5. Thể tích của hình hộp đó là
A. 40
B. 60 π
C. 60
D. 20
Cho tam giác ABC có độ dài ba cạnh là Ab=2;BC=3;CA=4. Tính góc A B C ^ (chọn kết quả gần đúng nhất).
A. 60 độ
B. 104 độ 29’
C. 75 độ 31’
D. 120 độ
Trong không gian với hệ tọa độ Oxyz, xét tứ diện ABCD có các cặp cạnh đối diện bằng nhau và điểm D khác phía với O so với mặt phẳng (ABC); đồng thời A, B, C lần lượt là giao điểm của các trục Ox, Oy, Oz và mặt phẳng α : x m + y m + 2 + z m - 5 = 1 (với m ≠ - 2 , m ≠ 0 , m ≠ 5 ). Tìm khoảng cách ngắn nhất từ tâm mặt cầu ngoại tiếp I của tứ diện ABCD đến O.
A. 20
B. 1 4
C. 36
D. 26 2