KN

Tam giác ABC vuông tại A Đường cao AH Câu a) c/m tam giác ABC đồng dạng với ABH b) AB=6 AC=8 Tính BC,AH c) lCm AH² = BH.HC d) vẽ phân giác BD ( D thuộc A). Gọi I là giao điểm của AH và BD C/M AB.BI=BD.HB và tam giác AID cân.

LD
30 tháng 3 2022 lúc 9:38

a, Xét ΔABC và ΔHBA có :

\(\widehat{A}=\widehat{AHB}=90^0\)

\(\widehat{B}:chung\)

\(\Rightarrow\Delta ABC\sim\Delta HBA\left(g-g\right)\)

b, Xét ΔABC vuông tại A, theo định lý Pi-ta-go ta có :

\(BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)

Ta có : \(\Delta ABC\sim\Delta HBA\left(cmt\right)\)

\(\Rightarrow\dfrac{AC}{AH}=\dfrac{BC}{AB}\)

hay \(\dfrac{8}{AH}=\dfrac{10}{6}\)

\(\Rightarrow AH=\dfrac{8.6}{10}=4,8\left(cm\right)\)

c, Xét ΔAHB và ΔCHA có :

\(\widehat{BHA}=\widehat{AHC}=90^0\)

\(\widehat{BAH}=\widehat{C}\left(phụ\cdot với\cdot\widehat{B}\right)\)

\(\Rightarrow\Delta AHB\sim\Delta CHA\left(g-g\right)\)

\(\Rightarrow\dfrac{AH}{HC}=\dfrac{BH}{AH}\)

\(\Rightarrow AH^2=HC.BH\)

d, Xét ΔABD và ΔHBI có :

\(\widehat{H}=\widehat{A}=90^0\)

\(\widehat{ABD}=\widehat{HBI}\left(phân\cdot giác\cdot BD\right)\)

\(\Rightarrow\Delta ABD\sim\Delta HBI\left(g-g\right)\)

\(\Rightarrow\dfrac{AB}{HB}=\dfrac{BD}{BI}\)

\(\Rightarrow AB.BI=BD.HB\left(đpcm\right)\)

Bình luận (0)

Các câu hỏi tương tự
KN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
HD
Xem chi tiết
H24
Xem chi tiết
LL
Xem chi tiết
QN
Xem chi tiết
NT
Xem chi tiết
TE
Xem chi tiết