cot C=2
=>\(tanC=\dfrac{1}{cotC}=\dfrac{1}{2}\)
\(1+tan^2C=\dfrac{1}{cos^2C}\)
=>\(cos^2C=1+\dfrac{1}{4}=\dfrac{5}{4}\)
=>\(cosC=\dfrac{2}{\sqrt{5}}\) hoặc \(cosC=-\dfrac{2}{\sqrt{5}}\)
TH1: \(cosC=\dfrac{2}{\sqrt{5}}\)
=>\(\dfrac{BC^2+AC^2-AB^2}{2\cdot BC\cdot AB}=\dfrac{2}{\sqrt{5}}\)
=>\(\dfrac{5+9-AB^2}{6\sqrt{5}}=\dfrac{2}{\sqrt{5}}\)
=>\(14-AB^2=12\)
=>AB^2=2
=>\(AB=\sqrt{2}\)
TH2: \(cosC=-\dfrac{2}{\sqrt{5}}\)
=>\(\dfrac{5+9-AB^2}{6\sqrt{5}}=-\dfrac{2}{\sqrt{5}}\)
=>\(14-AB^2=\dfrac{-2}{\sqrt{5}}\cdot6\sqrt{5}=-12\)
=>AB^2=26
=>\(AB=\sqrt{26}\)
Đúng 2
Bình luận (0)