TH

Tam giác ABC. BM là phân giác góc B. CN là phân giác góc C. BN+CM=BC Tính góc A Huuu hẹp mi hẹp mi! Giúp t vs akk, t ngu hình r😮‍💨🥲

NL
8 tháng 1 2024 lúc 14:06

Gọi D là giao điểm BM và CN.

Trên cạnh BC lấy điểm E sao cho \(BE=BN\)

Khi đó \(CE=BC-BE=BN+CM-BE=CM\)

Xét hai tam giác BDE và BDN có: 

\(\left\{{}\begin{matrix}BE=BN\\\widehat{DBE}=\widehat{DBN}\left(\text{BM là phân giác}\right)\\BD\text{ chung}\end{matrix}\right.\)  \(\Rightarrow\Delta BDE=\Delta BDN\left(c.g.c\right)\)

\(\Rightarrow\widehat{BDE}=\widehat{BDN}\)

Hoàn toàn tương tự, ta cũng có \(\Delta CDE=\Delta CDM\left(c.g.c\right)\Rightarrow\widehat{CDE}=\widehat{CDM}\)

Mà \(\widehat{BDN}=\widehat{CDM}\) (đối đỉnh) \(\Rightarrow\widehat{BDN}=\widehat{BDE}=\widehat{CDM}=\widehat{CDE}\)

Mà \(\widehat{BDE}+\widehat{CDE}+\widehat{CDM}=180^0\)

\(\Rightarrow3\widehat{BDE}=180^0\Rightarrow\widehat{BDE}=60^0\)

\(\Rightarrow\widehat{CDE}=60^0\)

\(\Rightarrow\widehat{BDC}=\widehat{BDE}+\widehat{CDE}=120^0\)

Theo tính chất tổng 3 góc tổng tam giác:

\(\widehat{BDC}+\widehat{DBC}+\widehat{DCB}=180^0\)

\(\Rightarrow120^0+\dfrac{1}{2}\widehat{B}+\dfrac{1}{2}\widehat{C}=180^0\)

\(\Rightarrow\widehat{B}+\widehat{C}=120^0\)

Do tổng 3 góc trong tam giác ABC bằng 180 độ

\(\Rightarrow\widehat{A}+\widehat{B}+\widehat{C}=180^0\)

\(\Rightarrow\widehat{A}+120^0=180^0\)

\(\Rightarrow A=60^0\)

Bình luận (1)
NL
8 tháng 1 2024 lúc 14:07

loading...

Bình luận (0)

Các câu hỏi tương tự
LB
Xem chi tiết
DN
Xem chi tiết
NT
Xem chi tiết
PL
Xem chi tiết
CM
Xem chi tiết
DT
Xem chi tiết
NT
Xem chi tiết
LT
Xem chi tiết
HG
Xem chi tiết