Chứng minh: (a+b+c) . (a^2 +b^2+c^2-ab-bc-ca)=a^3+b^3+c^3-3abc
Áp dụng a^3+b^3+c^3+3abc=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)
Biết 1/a+1/b+1/c=0
Tính A=bc/a^2 + ca/b^2 +ab/c^2
Cho (a+b+c)^2 = 3(ab+bc+ca). CMR: a=b=c
Cho a^3+b^3+c^3 = 3abc. CMR: a=b=c và a+b+c=0
Cho a+b+c=0. CMR: a^3+b^3+c^3 = 3abc
(a+b+c).(a2+b2+c2-ab-bc-ca)
a) Chứng minh =a3+b3+c3-3abc
b) Nếu cho a+b+c
Chứng minh a3+b3+c3=3abc
chứng minh hằng đẳng thức
a)(a+b+c)^3 - a^3 -b^3 - c^3 = 3(a+b)(b+c)(c+a)
b) a^3 + b^3 + c^3 - 3abc = (a+b+c)(a^2+b^2+c^2 - ab - bc - ca)
Giúp mình với nhé
c/m : (a+b+c)(a2 + b2 + c2 -ab -bc-ca) = a3 + b3 + c3 -3abc
Bài 3 chứng minh các đẳng thức sau:
a, a^3 + b^3 + c^3 - 3abc = ( a+b+c) ( a^2 + b^2 + c^2 -ab-bc-ca )
b, (a+b+c)^3 -a^3 -b^3 - c^3 = 3(a+b)(b+c)(c+a)
Chứng minh a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca)
Cho a,b,c khác 0 và phân biệt thỏa mãn a^3+b^3+c^3=3abc
Tính M=ab^2/a^2+b^2-c^2 +bc^2/b^2+c^2-a^2 + ca^2/c^2+a^2-b^2