Điều kiện: \(\left\{{}\begin{matrix}x\ge0\\2-x\ge0\end{matrix}\right.\Leftrightarrow0\le x\le2\)
Đặt \(\left\{{}\begin{matrix}a=\sqrt{x}\\b=\sqrt{2-x}\end{matrix}\right.\left(0\le a,b\le\sqrt{2}\right)\) \(\Rightarrow a^2+b^2=2\)
Phương trình đã cho trở thành: \(a+b+ab=3\)
Ta có hệ phương trình: \(\left\{{}\begin{matrix}a^2+b^2=2\\a+b+ab=3\end{matrix}\right.\)
Đặt \(S=a+b;P=ab\). Hệ trở thành:
\(\left\{{}\begin{matrix}S^2-2P=2\\S+P=3\end{matrix}\right.\)
\(\Rightarrow S^2+2S=8\Leftrightarrow S^2+2S-8=0\)
\(\Leftrightarrow\left[{}\begin{matrix}S=2\\S=-4\end{matrix}\right.\)
*Với \(S=2\Rightarrow P=1\). Ta có: \(\left\{{}\begin{matrix}a+b=2\\ab=1\end{matrix}\right.\) và:
\(S^2-4P=2^2-4.1=0\)
Do đó a,b là 2 nghiệm của phương trình:
\(X^2-2X+1=0\Leftrightarrow X=1\)
\(\Rightarrow a=b=1\Rightarrow x=2-x=1\Leftrightarrow x=1\)
*Với \(S=-4\Rightarrow P=7\). Ta có \(\left\{{}\begin{matrix}a+b=-4\\ab=7\end{matrix}\right.\) và
\(S^2-4P=\left(-4\right)^2-4.7=-12< 0\)
Do đó không tồn tại giá trị a,b nào thoả mãn hệ phương trình trên.
Thử lại ta có nghiệm của phương trình đã cho là \(x=1\)