* Điều kiện: \(2\le x\le10\)
* Nhận xét:
VP = x2 -12x + 40 = (x-6)2 + 4 => \(VP\ge4\) . Xảy ra dấu bằng khi và chỉ khi (x-6)2 = 0 => x = 6
VT = \(\sqrt{x-2}+\sqrt{10-x}=1.\sqrt{x-2}+1.\sqrt{10-x}\)
Áp dụng bất đẳng thức Bi-nhi-a Cốp-xki ta có:
VT \(\le\sqrt{\left(1^2+1^2\right).\left(\sqrt{\left(x-2\right)^2}+\sqrt{\left(10-x\right)^2}\right)}=4\)
Xảy ra dấu bằng khi \(\sqrt{x-2}=\sqrt{10-x}\) => x = 6
Như vậy: \(VP\ge4;VT\le4\)
=> PT có nghiệm khi và chỉ khi VP = VT = 4 => x = 6
\(t=\sqrt{x-2}+\sqrt{10-x}\)
\(\Rightarrow t^2=8+2\sqrt{-x^2+12x-20}\)\(\Rightarrow-x^2+12x-20=\left(\frac{t^2}{2}-4\right)^2=\frac{t^4}{4}-4t^2+16\)
\(pt\rightarrow t=-\left(\frac{t^4}{4}-4t^2+16\right)+20\Leftrightarrow\left(t-4\right)\left(t^3+4t^2+4\right)=0\)
\(\Leftrightarrow t=4\text{ }\left(do\text{ }t>0\right)\)
\(\Rightarrow-x^2+12x-20=\left(\frac{t^2}{2}-4\right)^2=16\Leftrightarrow x=6\)
Mình xin trình bày lời giải cho bài này.
Áp dụng bất đẳng thức bunha:
(√x−2+√10−x)2≤(1+1)(x−2+10−x)≤16(x−2+10−x)2≤(1+1)(x−2+10−x)≤16
⇒√x−2+√10−x≤4⇒x−2+10−x≤4
x2−12x+40=(x−6)2+4≥4x2−12x+40=(x−6)2+4≥4
⇒VT≤4≤VP⇒VT≤4≤VP
dâu "=" xảy ra ⇔VT=4=VP⇔VT=4=VP
⇔x=6⇔x=6
Thay x=6 vào phương trình ban đầu ta thấy thỏa
Kết luận: x=6 là nghiệm duy nhất
Mình xin trình bày lời giải cho bài này.
Áp dụng bất đẳng thức bunha:
(√x−2+√10−x)2≤(1+1)(x−2+10−x)≤16(x−2+10−x)2≤(1+1)(x−2+10−x)≤16
⇒√x−2+√10−x≤4⇒x−2+10−x≤4
x2−12x+40=(x−6)2+4≥4x2−12x+40=(x−6)2+4≥4
⇒VT≤4≤VP⇒VT≤4≤VP
dâu "=" xảy ra ⇔VT=4=VP⇔VT=4=VP
⇔x=6⇔x=6
Thay x=6 vào phương trình ban đầu ta thấy thỏa
Kết luận: x=6 là nghiệm duy nhất
X = 6
Các bạn nhớ ủng hộ cho mình nhé!
Áp dụng bất đẳng thức bunha:
(√x−2+√10−x)2≤(1+1)(x−2+10−x)≤16(x−2+10−x)2≤(1+1)(x−2+10−x)≤16
⇒√x−2+√10−x≤4⇒x−2+10−x≤4
x2−12x+40=(x−6)2+4≥4x2−12x+40=(x−6)2+4≥4
⇒VT≤4≤VP⇒VT≤4≤VP
dâu "=" xảy ra ⇔VT=4=VP⇔VT=4=VP
⇔x=6⇔x=6
Thay x=6 vào phương trình ban đầu ta thấy thỏa
Kết luận: x=6 là nghiệm duy nhất
$t=\sqrt{x-2}+\sqrt{10-x}$t=√x−2+√10−x
$\Rightarrow t^2=8+2\sqrt{-x^2+12x-20}$⇒t2=8+2√−x2+12x−20$\Rightarrow-x^2+12x-20=\left(\frac{t^2}{2}-4\right)^2=\frac{t^4}{4}-4t^2+16$⇒−x2+12x−20=(t22 −4)2=t44 −4t2+16
\(\sqrt{x-2}+\sqrt{10-x}=x^2-12x+40\left(ĐK:2\le x\le10\right)\)
Áp dụng BĐT Schwartz vào vế trái , được : \(\sqrt{x-2}+\sqrt{10-x}\le\sqrt{2\left(x-2+10-x\right)}=4\)
(Dấu "=" xảy ra khi x = 6 )
Xét vế phải : \(x^2-12x+40=\left(x-6\right)^2+4\ge4\)(Dấu "=" xảy ra khi x = 6)
Do đó, phương trình tương đương với ; \(\hept{\begin{cases}\sqrt{x-2}+\sqrt{10-x}=0\\x^2-12x+40=0\end{cases}\Leftrightarrow x=6\left(TM\right)}\)
Vậy phương trình có nghiệm duy nhất : x = 6