\(\sqrt{x-2}+\sqrt{10-x}=x^2-12x+40\)

NM
15 tháng 10 2021 lúc 20:06

\(ĐK:2\le x\le10\)

\(PT\Leftrightarrow\left(\sqrt{x-2}-2\right)+\left(\sqrt{10-x}-2\right)=x^2-12x+36\\ \Leftrightarrow\dfrac{x-6}{\sqrt{x-2}+2}+\dfrac{6-x}{\sqrt{10-x}+2}-\left(x-6\right)^2=0\\ \Leftrightarrow\left(x-6\right)\left(\dfrac{1}{\sqrt{x-2}+2}-\dfrac{1}{\sqrt{10-x}+2}-x+6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=6\left(tm\right)\\\dfrac{1}{\sqrt{x-2}+2}-\dfrac{1}{\sqrt{10-x}+2}-x+6=0\left(1\right)\end{matrix}\right.\)

Với \(x\le10\Leftrightarrow\left(1\right)\le\dfrac{1}{2\sqrt{2}+2}-\dfrac{1}{2}-10+6< 0\Leftrightarrow x\in\varnothing\)

Vậy \(x=6\)

 

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
CP
Xem chi tiết
ND
Xem chi tiết
DT
Xem chi tiết
MT
Xem chi tiết
NV
Xem chi tiết
PV
Xem chi tiết
DN
Xem chi tiết
H24
Xem chi tiết