Lời giải:
Đẳng thức trên xảy ra khi \(\left\{\begin{matrix}
x-1\geq 0\\
y-1\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
x\geq 1\\
y\geq 1\end{matrix}\right.\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Lời giải:
Đẳng thức trên xảy ra khi \(\left\{\begin{matrix}
x-1\geq 0\\
y-1\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
x\geq 1\\
y\geq 1\end{matrix}\right.\)
Câu nào đúng trong các câu sau (với x, y không âm) ?
A. \(x\sqrt{y}-\sqrt{xy}=xy\left(1-\sqrt{xy}\right)\)
B. \(x\sqrt{y}-\sqrt{xy}=\sqrt{xy}\left(\sqrt{x}-1\right)\)
C. \(x\sqrt{y}-\sqrt{xy}=\sqrt{y}\left(x-1\right)\)
D. \(x\sqrt{y}-\sqrt{xy}=x\sqrt{y}\left(1-\sqrt{xy}\right)\)
\(\frac{\sqrt{x}\left(\sqrt{x}-2\right)+\sqrt{y}\left(\sqrt{y}+2\right)-2\sqrt{xy}+1}{\sqrt{x}\left(\sqrt{x}-2\sqrt{y}\right)+\left(\sqrt{y}+1\right)\left(\sqrt{y}-1\right)}\)
P=\(\frac{x}{\left(\sqrt{x}+\sqrt{y}\right)\left(1-\sqrt{y}\right)}-\frac{y}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+1\right)}-\frac{xy}{\left(\sqrt{x}+1\right)\left(1-\sqrt{y}\right)}\)
a.Rút gọn P
b.Tìm x,y nguyên để P=2
\(\frac{X}{\left(\sqrt{X}+\sqrt{Y}\right)\left(1-\sqrt{Y}\right)}-\frac{Y}{\left(\sqrt{X}+\sqrt{Y}\right)\left(\sqrt{X}+1\right)}-\frac{XY}{\left(\sqrt{X}+1\right)\left(1-\sqrt{Y}\right)}\)
Rút gon biểu thức trên
Tìm giá trị nguyên x; y thỏa mãn P=2
\(\left\{{}\begin{matrix}\left(\sqrt{x}+1\right)\left(\sqrt{y}-1\right)=\sqrt{xy}\\\left(\sqrt{x}-1\right)\left(\sqrt{y}+3\right)=\sqrt{xy}\end{matrix}\right.\)
1. B=\(\frac{x}{\left(\sqrt{x}+_{\sqrt{y}}\right)\left(1-\sqrt{y}\right)}-\frac{y}{\left(\sqrt{x}+\sqrt{y}\right)}-\frac{xy}{\left(\sqrt{x}+1\right)\left(1-\sqrt{y}\right)}\)
a. Tìm ĐKXĐ và Rút gọn
b. Tìm x,y nguyên thỏa mãn B=2
a)\(3\sqrt{40\sqrt{12}}+4\sqrt{\sqrt{75}}-5\)\(\sqrt{5\sqrt{48}}\)
b)\(\sqrt{8\sqrt{3}}+3\sqrt{20\sqrt{3}}-2\sqrt{45\sqrt{3}}\)
c)\(\left(\sqrt{x}-1\right).\left(x+\sqrt{x}+1\right)\left(x\ge0;y\ge0\right)\)
d)\(\left(\sqrt{x}+1\right)\left(x+1-\sqrt{x}\right)\left(x\ge0;y\ge0\right)\)
e)\(\left(\sqrt{x}+y\right)\left(x+y^2-y\sqrt{2}\right)\left(x\ge0;y\ge0\right)\)
rút gọn:
a)\(\left(\frac{1}{2+2\sqrt{x}}+\frac{1}{2-2\sqrt{x}}-\frac{x^2+1}{1-x^2}\right)\times\left(1+\frac{1}{x}\right)\)
b)\(\left(\frac{2\sqrt{xy}}{x-y}+\frac{\sqrt{x}-\sqrt{y}}{2\sqrt{x}+\sqrt{y}}\right)\times\frac{2\sqrt{x}}{\sqrt{x}+\sqrt{y}}+\frac{\sqrt{y}}{\sqrt{y}-\sqrt{x}}\)
c)\(\left(\frac{x-1}{\sqrt{x}-1}+\frac{x\sqrt{x}-1}{1-x}\right)\div\frac{\left(\sqrt{x}-1\right)^2+\sqrt{x}}{\sqrt{x}+1}\)
Bài 2. Cho A=\(\dfrac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}\) :\([\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\dfrac{1}{xy+2\sqrt{xy}}+\dfrac{2}{\left(\sqrt{x}+\sqrt{y}\right)^3}\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)]\)