Ta có:
x² ≥ 0 với mọi x ∈ R
⇒ x² + 6 > 0 với mọi x ∈ R
⇒ -5/(x² + 6) < 0 với mọi x ∈ R
Vậy căn thức đã cho không xác định
Ta có:
x² ≥ 0 với mọi x ∈ R
⇒ x² + 6 > 0 với mọi x ∈ R
⇒ -5/(x² + 6) < 0 với mọi x ∈ R
Vậy căn thức đã cho không xác định
\(\dfrac{2-x}{x^2-9}\) xđk?
Tìm `ĐKXĐ`:
\(\sqrt{\dfrac{-5}{6+x}}\)
\(\sqrt{\dfrac{-2}{6-x}}\)
\(\sqrt{\dfrac{-x+3}{-6}}\)
\(\sqrt{\dfrac{7x-1}{-9}}\)
\(\sqrt{\dfrac{x+2}{x^2+2x+1}}\)
\(\sqrt{\dfrac{x-2}{x^2-2x+4}}\)
1. Tính : \(\dfrac{12}{4-\sqrt{10}}\)-6\(\sqrt{\dfrac{5}{2}}\)+\(\dfrac{5\sqrt{2}+\sqrt{10}}{\sqrt{5}+1}\)
2,Rút gọn:A=(\(\dfrac{\sqrt{x}}{\sqrt{x}-5}\)-\(\dfrac{5}{\sqrt{x}+5}\)+\(\dfrac{10\sqrt{x}}{25-x}\)):\(\dfrac{3}{\sqrt{x}+5}\)
1,Tính \(\dfrac{12}{4-\sqrt{10}}-6\sqrt{\dfrac{5}{2}}+\dfrac{5\sqrt{2}+\sqrt{10}}{\sqrt{5}+1}\)
2,Rút gọn:A=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{5}{\sqrt{x}+5}+\dfrac{10\sqrt{x}}{25-x}\right):\dfrac{3}{\sqrt{x}+5}\)
\(\left(6\right)\dfrac{3\sqrt{x}}{5\sqrt{x}-1}\le-3\)
\(\left(7\right)\dfrac{8\sqrt{x}+8}{6\sqrt{x}+9}>\dfrac{8}{3}\)
\(\left(8\right)\dfrac{\sqrt{x}-2}{2\sqrt{x}-3}< -4\)
\(\left(9\right)\dfrac{4\sqrt{x}+6}{5\sqrt{x}+7}\le-\dfrac{2}{3}\)
\(\left(10\right)\dfrac{6\sqrt{x}-2}{7\sqrt{x}-1}>-6\)
\(\dfrac{6}{2-\sqrt{10}}-\dfrac{2\sqrt{5}-5\sqrt{2}}{\sqrt{2}-\sqrt{5}}+\sqrt{49+4\sqrt{10}}\)
\(\left(\dfrac{x-\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{x+\sqrt{x}}\right):\dfrac{\sqrt{x}+1}{x}\)
thực hiện phép tính
a)\(\dfrac{3}{5}\)-\(\dfrac{1}{2}\)\(\sqrt{1\dfrac{11}{25}}\)
b)(5+2\(\sqrt{6}\))(5-2\(\sqrt{6}\))
c)\(\sqrt{\left(2-\sqrt{3}\right)^2}\)+\(\sqrt{4-2\sqrt{3}}\)
d)\(\dfrac{\left(x\sqrt{y}+y\sqrt{x}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\)(với x,y>0)
\(\dfrac{\sqrt{x}+3}{\sqrt{x}+1}\)+\(\dfrac{\sqrt{x}+2}{6-\sqrt{x}}\)+ \(\dfrac{\sqrt{x}+50}{x-5\sqrt{x}-6}\)
d) \(x-5\sqrt{x}+6=0\)
e) \(\sqrt{x-1}+\dfrac{3}{2}\sqrt{4x-4}-\dfrac{2}{5}\sqrt{25x-25}=4\)
f) \(\sqrt{x-5}+\sqrt{4x-20}-\dfrac{1}{3}\sqrt{9x-45}=6\)