tính
a, \(\sqrt{169}\) - \(\sqrt{225}\)
b \(\dfrac{\sqrt{144}}{9}\)
c \(\sqrt{18}\) \(\div\) \(\sqrt{2}\)
Giải PT:
a) \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
b) \(\sqrt{18x-9}-0,5\sqrt{2x-1}+\dfrac{1}{2}\sqrt{25\left(2x-1\right)}+\sqrt{49\left(2x-1\right)}=24\)
c) \(\sqrt{36x-72}-15\sqrt{\dfrac{x-2}{25}}=4\left(5+\sqrt{x-2}\right)\)
d) \(\sqrt{\dfrac{1}{3x+2}}-\dfrac{1}{2}\sqrt{\dfrac{9}{3x+2}}+\sqrt{\dfrac{16}{3x+2}}-5\sqrt{\dfrac{1}{12x+8}}=1\)
e) \(\dfrac{1}{2}\sqrt{\dfrac{49x}{x+2}}-3\sqrt{\dfrac{x}{4x+8}}-\sqrt{\dfrac{x}{x+2}}-\sqrt{5}=0\)
\(\sqrt{36x-72}-15\sqrt{\dfrac{x-2}{25}}=4\left(5+\sqrt{x-2}\right)\)
Ai giải cho mình phép này với, mình không biết bắt đầu từ đâu:
\(\sqrt{8\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{\sqrt{192}}\)
Cho biểu thức A=( \(\dfrac{x-5\sqrt{x}}{x-25}-1\)) :\(\left(\dfrac{25-x}{x+2\sqrt{x-15}}-\dfrac{\sqrt{x}+3}{\sqrt{x}+5}+\dfrac{\sqrt{x}-5}{\sqrt{x}-3}\right)\)
a) Rút gọn A b)Tìm x để A<1
help me , please
Rút gọn
A=\(\dfrac{1}{\sqrt{1}-\sqrt{2}}-\dfrac{1}{\sqrt{2}-\sqrt{3}}+\dfrac{1}{\sqrt{3}-\sqrt{4}}-...-\dfrac{1}{\sqrt{24}-\sqrt{25}}\)
B=\(\dfrac{5}{4+\sqrt{11}}+\dfrac{11-3\sqrt{11}}{\sqrt{11}-3}-\dfrac{4}{\sqrt{5}-1}+\sqrt{\left(\sqrt{5}-2\right)^2}\)
C=\(\dfrac{\sqrt{x}+1}{x\sqrt[]{x}+x+\sqrt{x}}:\dfrac{1}{x^2-\sqrt{x}}\) (với x>0; x#1)
D=\(\dfrac{\sqrt{x^2-10x+25}}{x-5}\)
Rút gọn biểu thức trên:
\(P=\left(\dfrac{x+3\sqrt{x}}{x-25}+\dfrac{1}{\sqrt{x}+5}\right):\dfrac{\sqrt{x}+2}{\sqrt{x}-5}\)
P = \(\left(\dfrac{x+3\sqrt{x}}{x-25}+\dfrac{1}{\sqrt{x}+5}\right):\dfrac{\sqrt{x}+2}{\sqrt{x}-5}\)
Tìm giá trị nhỏ nhất của P
Tìm giá trị các biểu thức sau bằng cách biến đổi rút gọn thích hợp :
a) \(\sqrt{\dfrac{25}{81}.\dfrac{16}{49}.\dfrac{196}{9}}\)
b) \(\sqrt{3\dfrac{1}{16}.2\dfrac{14}{25}.2\dfrac{34}{81}}\)
c) \(\dfrac{\sqrt{640}.\sqrt{34,3}}{\sqrt{567}}\)
d) \(\sqrt{21,6}.\sqrt{810}.\sqrt{11^2-5^2}\)