ĐKXĐ: \(-\sqrt{10}\le x\le\sqrt{10}\)
Ta có: \(\sqrt{25-x^2}-\sqrt{10-x^2}=3\)
\(\Leftrightarrow\sqrt{25-x^2}=3+\sqrt{10-x^2}\)
\(\Leftrightarrow\sqrt{\left(25-x^2\right)^2}=\left(3+\sqrt{10-x^2}\right)^2\)
\(\Leftrightarrow25-x^2=9+6\cdot\sqrt{10-x^2}+10-x^2\)
\(\Leftrightarrow25-x^2=6\sqrt{10-x^2}-x^2+19\)
\(\Leftrightarrow25-x^2-6\sqrt{10-x^2}+x^2-19=0\)
\(\Leftrightarrow-6\sqrt{10-x^2}+6=0\)
\(\Leftrightarrow-6\sqrt{10-x^2}=-6\)
\(\Leftrightarrow10-x^2=1\)
\(\Leftrightarrow x^2=9\)
hay \(\left[{}\begin{matrix}x=3\left(nhận\right)\\x=-3\left(nhận\right)\end{matrix}\right.\)
Vậy: S={3;-3}