Chương I - Căn bậc hai. Căn bậc ba

NN

tính giá trị biểu thức

a)\(\sqrt{2-\sqrt{3}}\)\(\left(\sqrt{6}+\sqrt{2}\right)\)

b)\(\dfrac{x-25}{\sqrt{x}-5}\)-\(\dfrac{4+4\sqrt{x}+x}{\sqrt{x}+2}\)với x\(\ge\)0 ; x\(\ne\)25

NL
23 tháng 8 2021 lúc 18:55

\(\sqrt{2-\sqrt{3}}\left(\sqrt{6}+\sqrt{2}\right)=\sqrt{4-2\sqrt{3}}\left(\sqrt{3}+1\right)=\sqrt{\left(\sqrt{3}-1\right)^2}\left(\sqrt{3}+1\right)\)

\(=\left|\sqrt{3}-1\right|\left(\sqrt{3}+1\right)=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)=3-1=2\)

\(\dfrac{x-25}{\sqrt{x}-5}-\dfrac{x+4\sqrt{x}+4}{\sqrt{x}+2}=\dfrac{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\sqrt{x}-5}-\dfrac{\left(\sqrt{x}+2\right)^2}{\sqrt{x}+2}\)

\(=\sqrt{x}+5-\left(\sqrt{x}+2\right)=5-2=3\)

Bình luận (0)
NT
23 tháng 8 2021 lúc 22:42

a: Ta có: \(\sqrt{2-\sqrt{3}}\cdot\left(\sqrt{6}+\sqrt{2}\right)\)

\(=\sqrt{4-2\sqrt{3}}\cdot\left(\sqrt{3}+1\right)\)

\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)

=3-1

=2

b: Ta có: \(\dfrac{x-25}{\sqrt{x}-5}-\dfrac{x+4\sqrt{x}+4}{\sqrt{x}+2}\)

\(=\sqrt{x}+5-\sqrt{x}-2\)

=3

Bình luận (0)

Các câu hỏi tương tự
HL
Xem chi tiết
LL
Xem chi tiết
HL
Xem chi tiết
NS
Xem chi tiết
LL
Xem chi tiết
HL
Xem chi tiết
QT
Xem chi tiết
NS
Xem chi tiết
NS
Xem chi tiết