Chương I - Căn bậc hai. Căn bậc ba

NP

Giải phương trình sau: 

\(\sqrt{x^2-25}-6=3\sqrt{x+5}-2\sqrt{x-5}\)

H24
28 tháng 8 2021 lúc 8:41

`sqrt{x^2-25}-6=3sqrt{x+5}-2sqrt{x-5}(x>=5)`

`<=>sqrt{(x-5)(x+5)}+2sqrt{x-5}=3sqrt{x+5}+6`

`<=>sqrt{x-5}(sqrt{x+5}+2)=3(sqrt{x+5}+2)`

`<=>(sqrt{x+5}+2)(sqrt{x-5}-3)=0`

Vì `sqrt{x+5}+2>0`

`<=>sqrt{x-5}-3=0`

`<=>sqrt{x-5}=3`

`<=>x-5=9<=>x=14(tm)`

Vậy `x=14`

Bình luận (0)
NM
28 tháng 8 2021 lúc 8:43

\(\sqrt{x^2-25}-6=3\sqrt{x+5}-2\sqrt{x-5}\\ \Leftrightarrow\sqrt{\left(x-5\right)\left(x+5\right)}-6-3\sqrt{x+5}+2\sqrt{x-5}=0\\ \Leftrightarrow\left(2\sqrt{x-5}+\sqrt{\left(x-5\right)\left(x+5\right)}\right)-\left(3\sqrt{x+5}+6\right)=0\Leftrightarrow\sqrt{x-5}\left(2+\sqrt{x+5}\right)-3\left(2+\sqrt{x+5}\right)=0\\ \Leftrightarrow\left(\sqrt{x-5}-3\right)\left(2+\sqrt{x-5}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x-5}=3\\\sqrt{x-5}=-2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x-5=9\\x\in\varnothing\end{matrix}\right.\Leftrightarrow x=14\)

Bình luận (0)

Các câu hỏi tương tự
NP
Xem chi tiết
H24
Xem chi tiết
MN
Xem chi tiết
LL
Xem chi tiết
LG
Xem chi tiết
TT
Xem chi tiết
GO
Xem chi tiết
MN
Xem chi tiết
NL
Xem chi tiết