Ta có: \(\frac{232}{237}=1-\frac{5}{237}\)
\(\frac{659}{664}=1-\frac{5}{664}\)
Mà \(\frac{5}{237}>\frac{5}{664}\) => \(\frac{232}{237}< \frac{659}{664}\)
Ta có: \(\frac{232}{237}=1-\frac{5}{237}\)
\(\frac{659}{664}=1-\frac{5}{664}\)
Mà \(\frac{5}{237}>\frac{5}{664}\) => \(\frac{232}{237}< \frac{659}{664}\)
Cho a,b>0 và ab=1 CMR \(\frac{1}{a}+\frac{1}{b}+\frac{2}{a+b}\ge3\)
Bài 1: tính
a, 3\(\frac{1}{117}\). 4\(\frac{1}{119}\)-1\(\frac{116}{117}\).5\(\frac{118}{119}\)-\(\frac{5}{119}\)
b, 2\(\frac{1}{315}\).\(\frac{1}{651}\)-\(\frac{1}{105}\).3\(\frac{650}{651}\)-\(\frac{4}{315.651}\)+\(\frac{4}{105}\)
Làm giúp mình với mình cần luôn và ngay
Cho a, b, c, d dương. CM:
1) \(\frac{a^2}{b^5}+\frac{b^2}{c^5}+\frac{c^2}{d^5}+\frac{d^2}{a^5}\ge\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\)
2) \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{a+b+c}{\sqrt[3]{abc}}\)
3) \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{d^2}+\frac{d^2}{a^2}\ge\frac{a+b+c+d}{\sqrt[4]{abcd}}\)
4) \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge9;a+b+c\le1\)
Bài 1
\(16\frac{2}{7}:\left(-\frac{2}{5}\right)-28\frac{2}{7}:\left(-\frac{2}{5}\right)\)
bài 2
Tính độ dài của các cạnh của 1 tam giác, biết chu vi tam giác là 36cm và các cạnh của tam giác tỉ lệ với các số 3;4;5
1. Cho a,b \(\ge\) 0. Chứng minh \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{4}{a+b}\left(1\right)\). Áp dụng chứng minh các BĐT sau
a. \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge2\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\left(a,b,c\ge0\right)\)
b. \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge2\left(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\right)\)
Chứng minh rằng
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{9}{x+y+z}\ge\frac{4}{x+y}+\frac{4}{y+z}+\frac{4}{z+x}\)
cho a,b,c >0 và \(a^2+b^2+c^2=3\) tìm min của biểu thức
\(P=\frac{a^3}{\sqrt{b^2+3}}+\frac{b^3}{\sqrt{c^2+3}}+\frac{c^3}{\sqrt{a^2+3}}\)
chứng minh: a) \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2},vớia,b,c>0\)
b) \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{a+b+c}{2}\)
cho a , b , c >0. Chứng minh các bất đẳng thức :
1, ab + bc + ca \(\ge\sqrt{abc}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)
2, \(\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\ge a+b+c\)
3, \(ab+\frac{a}{b}+\frac{b}{a}\ge a+b+1\)
4, \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge ab+bc+ca\)
5, \(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)