Violympic toán 9

GD

Cho x > 2017; y > 2017 thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2017}\). Tính giá trị của biểu thức:

P = \(\dfrac{\sqrt{x+y}}{\sqrt{x-2017}+\sqrt{y-2017}}\)

DL
3 tháng 1 2018 lúc 22:27

Ta có:

\(P^2\)=\(\dfrac{x+y}{x+y-4034+2\sqrt{\left(x-2017\right)\left(y-2017\right)}}\)

\(P^2\)=\(\dfrac{x+y}{x+y-4034+2\sqrt{xy-2017\left(x+y\right)+2017^2}}\)

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2017}\)

Suy ra xy=2017(x+y)

Suy ra \(P^2=\dfrac{x+y}{x+y-4034+2\sqrt{2017\left(x+y\right)-2017\left(x+y\right)+2017^2}}\)

\(P^2=\dfrac{x+y}{x+y-4034+2\sqrt{2017^2}}\)

\(P^2=\dfrac{x+y}{x+y-4034+4034}=\dfrac{x+y}{x+y}=1\)

Vậy P=1

Bình luận (0)
GD
3 tháng 1 2018 lúc 21:58

Dark Bang SilentNam NguyễnNguyễn Huy Túlê thị hương giangMashiro ShiinaNgô Tấn ĐạtNguyễn Thanh HằngHà Nam Phan Đình

Bình luận (0)
DL
3 tháng 1 2018 lúc 22:31

Suy ra

\(P^2=\dfrac{x+y}{x+y-4034+4034}=\dfrac{x+y}{x+y}=1\)

Vậy P=1(vì P>0)

Bình luận (0)

Các câu hỏi tương tự
VH
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
PN
Xem chi tiết
QD
Xem chi tiết
H24
Xem chi tiết
NC
Xem chi tiết
TT
Xem chi tiết
DF
Xem chi tiết