Lời giải:
Ta có:
$\sqrt{2015.2015}+\sqrt{2015.2017}=\sqrt{2015}(\sqrt{2015}+\sqrt{2017})$
Mà:
$(\sqrt{2015}+\sqrt{2017})^2=4032+2\sqrt{2015.2017}$
$=4032+2\sqrt{(2016-1)(2016+1)}=4032+2\sqrt{2016^2-1}$
$< 4032+2\sqrt{2016^2}=4.2016$
$\Rightarrow \sqrt{2015}+\sqrt{2017}< 2\sqrt{2016}$
$\Rightarrow \sqrt{2015.2015}+\sqrt{2015.2017}=\sqrt{2015}(\sqrt{2015}+\sqrt{2017})< \sqrt{2015}.2\sqrt{2016}$
Vậy......
Lời giải:
\(\sqrt{20152015}+\sqrt{20152017}-2\sqrt{20152016}=(\sqrt{20152015}-\sqrt{20152016})+(\sqrt{20152017}-\sqrt{20152016})\)
\(=\frac{-1}{\sqrt{20152015}+\sqrt{20152016}}+\frac{1}{\sqrt{20152017}+\sqrt{20152016}}\)
Dễ thấy: $0< \sqrt{20152015}+\sqrt{20152016}<\sqrt{20152017}+\sqrt{20152016}}$
$\Rightarrow \frac{1}{\sqrt{20152015}+\sqrt{20152016}}>\frac{1}{\sqrt{20152017}+\sqrt{20152016}}$
$\Rightarrow \frac{-1}{\sqrt{20152015}+\sqrt{20152016}}+\frac{1}{\sqrt{20152017}+\sqrt{20152016}}< 0$
$\Rightarrow \sqrt{20152015}+\sqrt{20152017}< 2\sqrt{20152016}$
Kanzaki Mizuki: ok mình sửa lại bài rồi đó bạn.