(1/2)^91=(1/8192)^7
(1/5)^35=(1/3125)^7
=>(1/2)^91<(1/5)^35
(1/2)^91=(1/8192)^7
(1/5)^35=(1/3125)^7
=>(1/2)^91<(1/5)^35
1 so sánh \(\dfrac{1}{2^{300}}\) và \(\dfrac{1}{300^{200}}\)
\(\dfrac{1}{5^{199}}\) và\(\dfrac{1}{3^{300}}\)
2 so sánh
5\(^{20}\)và 3\(^{34}\)
(-5)\(^{39}\)và -2\(^{91}\)
so sánh các số sau : \(a=\dfrac{35}{49};b=\sqrt{\dfrac{5^2}{7^2}};c=\dfrac{\sqrt{5^2}+\sqrt{35^2}}{\sqrt{7^2}+\sqrt{49^2}};d=\dfrac{\sqrt{5^2}-\sqrt{35^2}}{\sqrt{7^2}-\sqrt{49^2}}\)
1. So sánh
a) \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2020}}+\dfrac{1}{2^{2021}}\) và B= \(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{13}{60}\)
b) \(C=\dfrac{2019}{2021}+\dfrac{2021}{2022}\) và \(D=\dfrac{2020+2022}{2019+2021}.\dfrac{3}{2}\)
So sánh:
a) 430 và 3.2410
b) \(\dfrac{3}{1^2.2^2}\) + \(\dfrac{5}{2^2.3^2}\) + \(\dfrac{7}{3^2.4^2}\) +...+\(\dfrac{19}{9^2.10^2}\) và 1
So sánh A=\(\dfrac{1}{100}+\dfrac{1}{101}+\dfrac{1}{102}+..+\dfrac{1}{2021}\)và B=20. So sánh A và B
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2021^2}\). So sánh A và \(\dfrac{2020}{2021}\)
so sánh 2^91 và 5^35
So sánh :2^91 và 5^35
so sánh 2^91 và 5^35 ?
So sánh: 2^91 và 5^35