Bài 1: Căn bậc hai

KT

So sánh
\(1,\sqrt{11}-\sqrt{10}\)\(\sqrt{6}-\sqrt{5}\)
2, \(\sqrt{17}+\sqrt{5}+1\)\(\sqrt{45}\)
3,\(\sqrt{2019}+\sqrt{2021}\)\(2\sqrt{2020}\)
4, \(\sqrt{2020}-\sqrt{2019}\)\(\sqrt{2019}-\sqrt{2018}\)
5,\(\sqrt{2021}-\sqrt{2019}\)\(\sqrt{2020}-\sqrt{2018}\)

H24
10 tháng 8 2020 lúc 16:23

1,Ta có : \(\sqrt{11}-\sqrt{10}=\frac{11-10}{\sqrt{11}+\sqrt{10}}=\frac{1}{\sqrt{11}+\sqrt{10}}\)

\(\sqrt{6}-\sqrt{5}=\frac{6-5}{\sqrt{6}-\sqrt{5}}=\frac{1}{\sqrt{6}-\sqrt{5}}\)

Dễ thấy : \(11+10>6+5\Rightarrow\sqrt{11}+\sqrt{10}>\sqrt{6}+\sqrt{5}\)

từ đó suy ra : \(\frac{1}{\sqrt{11}+\sqrt{10}}< \frac{1}{\sqrt{6}+\sqrt{5}}\)( theo so sánh phân số có cùng tử )

Vậy...

2,\(\sqrt{2019}+\sqrt{2021}và2\sqrt{2020}\)

Giả sử : \(\sqrt{2019}+\sqrt{2021}< 2\sqrt{2020}\)

\(\Leftrightarrow\left(\sqrt{2019}+\sqrt{2021}\right)^2< \left(2\sqrt{2020}\right)^2\) ( bình phương 2 vế )

\(\Leftrightarrow2019+2021+2\sqrt{2019.2021}< 4.2020\)

\(\Leftrightarrow4040+2\sqrt{2020^2-1^2}< 8080\)

\(\Leftrightarrow\)\(4040+\left(-4040\right)+2\left|2020-1\right|< 8080+\left(-4040\right)\)

( cộng cả hai vế với -4040)

\(\Leftrightarrow2.2019< 4040\)

\(\Leftrightarrow\frac{1}{2}.2.2019< 4040.\frac{1}{2}\)( nhân hai vế với 1/2)

\(\Leftrightarrow2019< 2020\) ( luôn đúng )

=> điều giả sử đúng

Vậy....

4,Ta có : \(\sqrt{2020}-\sqrt{2019}=\frac{2020-2019}{\sqrt{2020}+\sqrt{2019}}=\frac{1}{\sqrt{2020}+\sqrt{2019}}\)

\(\sqrt{2019}-\sqrt{2018}=\frac{2019-2018}{\sqrt{2019}+\sqrt{2018}}=\frac{1}{\sqrt{2019}+\sqrt{2018}}\)

dễ thấy \(2020+2019>2019+2018\Rightarrow\sqrt{2020}+\sqrt{2019}>\sqrt{2019}+\sqrt{2018}\) Từ đó suy ra : \(\frac{1}{\sqrt{2020}+\sqrt{2019}}< \frac{1}{\sqrt{2020}-\sqrt{2019}}\)

theo ss phân số có cùng tử

Vậy....

phần 5 làm tương tự như phần 4 nhé

Bình luận (0)

Các câu hỏi tương tự
MA
Xem chi tiết
NT
Xem chi tiết
MV
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
CW
Xem chi tiết
TY
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết