NK

So sánh 1+22+23+...+22005 với 22006

TD
1 tháng 2 2019 lúc 13:11

1 + 22 + 23 + ... + 22005

Gọi dãy số trên là A

A = \(1+2^2+2^3+....+2^{2005}\)

A =\(2^0+2^2+2^3+....+2^{2005}\)

A + \(2^1\)=  \(2^0+2^1+2^2+2^3+....+2^{2005}\)

( A + 2 ) x 21\(\left(2^0+2^1+2^2+2^3+....+2^{2005}\right)\times2^1\)

Ax2 + 4 =\(2^1+2^2+2^3+2^4+....+2^{2006}\)

4 + A x 2 - A =\(2^1+2^2+2^3+2^4+....+2^{2006}-\left(1+2^2+2^3+...2^{2005}\right)\)

4 + A = \(2^1+2^2+2^3+2^4+....+2^{2006}-1-2^2-2^3-....-2^{2005}\)

4 + A = \(2^{2006}-1\)

A=\(2^{2006}-1-4\)

A = \(2^{2006}-5\)

Mà \(2^{2006}-5< 2^{2006}\) 

\(\Rightarrow1+2^2+2^3+....+2^{2005}< 2^{2006}\)

Bình luận (0)

Các câu hỏi tương tự
LV
Xem chi tiết
DT
Xem chi tiết
TH
Xem chi tiết
TV
Xem chi tiết
NM
Xem chi tiết
VT
Xem chi tiết
MT
Xem chi tiết
NY
Xem chi tiết
H24
Xem chi tiết
NA
Xem chi tiết