\(m^3=4+\sqrt{80}-\sqrt{80}+4-3m\left(\sqrt[3]{4+\sqrt{80}}-\sqrt[3]{\sqrt{80}-4}\right)\)
\(\Leftrightarrow m^3=-12m+8\Leftrightarrow m^3+12m-8=0\)
vậy m la nghiệm của pt
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
\(m^3=4+\sqrt{80}-\sqrt{80}+4-3m\left(\sqrt[3]{4+\sqrt{80}}-\sqrt[3]{\sqrt{80}-4}\right)\)
\(\Leftrightarrow m^3=-12m+8\Leftrightarrow m^3+12m-8=0\)
vậy m la nghiệm của pt
Tính
1, a = \(\sqrt[3]{45+26\sqrt{2}}+\sqrt[3]{45-29\sqrt{2}}\)
2, x = \(\sqrt[3]{4+\sqrt{80}-\sqrt[3]{\sqrt{80}-4}}\)
3, \(\left(4+\sqrt{15}\right)\cdot\left(\sqrt{10}-\sqrt{6}\right)\cdot\sqrt{4-\sqrt{15}}\)
4, \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
5, \(\sqrt{\frac{4-\sqrt{7}}{4+\sqrt{7}}}+\sqrt{\frac{4+\sqrt{7}}{4-\sqrt{7}}}\)
Tính
1, a = \(\sqrt[3]{45+29\sqrt{2}}+\sqrt[3]{45-29\sqrt{2}}\)
2, x = \(\sqrt[3]{4+\sqrt{80}-\sqrt[3]{\sqrt{80}-4}}\)
3, \(\left(4+\sqrt{15}\right)\cdot\left(\sqrt{10}-\sqrt{6}\right)\cdot\sqrt{4-\sqrt{15}}\)
4, \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
5,\(\sqrt{\frac{4-\sqrt{7}}{4+\sqrt{7}}}+\sqrt{\frac{4+\sqrt{7}}{4-\sqrt{7}}}\)
Tập nghiệm của phương trình $\sqrt{x^2-4}$ - $\sqrt{x+2}$ = 0 có số phần tử là....
Chứng minh rằng :
\(x=\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\) là nghiệm của \(x^2-3x-15x=0\)
CM:
\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}>4\)
Tìm m để phương trình sau có nghiệm: \(\sqrt[3]{1-x}+\sqrt[3]{1+x}=m\)
Bài 3 giải phương trình :
a ) \(3\sqrt{4x+4}-\sqrt{9x+9}-8\sqrt{\frac{x+1}{16}}=5\)
b ) \(\sqrt{x^2-4x+4}=2\)
c ) \(\sqrt{x^2-6x+9}=x-2\)
d ) \(\sqrt{x^2+4}=\sqrt{2x+3}\)
e ) \(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\)
f ) \(x+\sqrt{2x+15}=0\)
Giải phương trình
a) \(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)
b) \(\sqrt{x^2-4}-x^2+4=0\)
c) \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)
d) \(\sqrt{9x^2-6x+2}+\sqrt{45x^2-30x+9}=\sqrt{6x-9x^2+8}\)