Cho các số \(x,y\) thỏa mãn đẳng thức \(5x^2+5y^2+8xy-2x+2x+2=0\). Tính giá trị của biểu thức \(M=\left(x+y\right)^{2007}+\left(x-2\right)^{2008}+\left(y+1\right)^{2009}\)
Cho các số x, y thỏa mãn đẳng thức \(5x^2+5y^2+8xy-2x+2y+2=0\). Tính giá trị của biểu thức
\(M=\left(x+y\right)^{2023}+\left(x-2\right)^{2024}+\left(y+1\right)^{2025}\)
Cho biểu thức: Q= \([\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right).\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}]\)
a, Tìm điều kiện xác định của biểu thức
b, Rút gọn Q
c, Chứng minh rằng với các giá trị của x thỏa mãn điều kiện xác định thì -5 <= Q <= 0
1) Cho x,y,z là các số thực thỏa mãn \(0\le x,y,z\le1\). Chứng minh rằng
\(\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)\le\left(1-xyz\right)^3\)
2) Cho x,y là các số thực thỏa mãn \(x^2+xy+y^2=3\). Tìm giá trị lớn nhất và nhỏ nhất của biểu thức
\(P=2x^2-5xy+2y^2\)
Cho các số x,y thỏa mãn điều kiện:
\(x^2-2xy+6y^2-12x+2y+41=0\)
Tính giá trị của biểu thức: A=\(\dfrac{2020-2019\left(9-x-y\right)^{2019}-\left(x-6y\right)^{2010}}{y^{2010}}\)
cho x;y;z là các số thực dương thỏa mãn x+y+z=3xyz.Tìm giá trị nhỏ nhất của biểu thức:
\(A=\frac{yz}{x^3\left(z+2y\right)}+\frac{zx}{y^3\left(x+2z\right)}+\frac{xy}{z^3\left(y+2x\right)}\)
1. giá trị của x để 49x2 - 28x + 21 đạt giá trị nhỏ nhất
2. nghiệm của phương trình: (2x-3)2 - 4x2 - 279 = 0
3. Gía trị lớn nhất của: -3x2 - 6x - 4
4. giá trị của x <0 sao cho: (x+1)2 - 4 = 0
5. giá trị của x >0 thỏa mãn: x2 - 12 = 0
6. giá trị của x+y biết x-y=4 , xy=5 và x>0
7. giá trị của x thỏa mãn: 3x2 + 7 = (x+2)(3x+1)
8. giá trị của x biết: (2x+1)2 - 4(x+2)2 = 9
9. giá trị của biểu thức biết \(A=\frac{3\left(x+y\right)^2}{3\left(x-y\right)^2}\)và \(xy=\frac{1}{2}\)
10. Nghiệm của phương trình: \(\left(x-3\right)\left(x^2+3x+9\right)+x\left(x+2\sqrt{2}\right)\left(2\sqrt{2}\right)-x=-3\)
Tập hợp các giá trị x thỏa mãn \(4\left(x-1\right)^2-9\left(x+2^2\right)=0\) là ...
Giá trị của \(x^3+y^3+3xy\)thỏa mãn \(x+y=1\)
Giải hộ mk với mấy bn ơi, thanks
cho các số x,y thỏa mãn đẳng thức \(5x^2+5y^2+8xy-2x+2y+2=0\)
tính giá trị của biểu thức M=\(\left(x+y\right)^{2015}+\left(x-2\right)^{2016}+\left(y+1\right)^{2017}\)