rút gọn:
a, \(\frac{\sqrt{405}+3\sqrt{27}}{3\sqrt{3}+\sqrt{45}}\)
b,\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}-\sqrt{6}-\sqrt{9}-\sqrt{12}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
c, \(\frac{\sqrt{6-2\sqrt{5}}}{\sqrt{5}-1}\)
Rút gọn : ( giúp với )
a) \(\dfrac{\sqrt{6}+\sqrt{10}}{\sqrt{21}+\sqrt{35}}\)
b) \(\dfrac{\sqrt{405}+3\sqrt{27}}{3\sqrt{3}+\sqrt{45}}\)
c) \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}-\sqrt{6}-\sqrt{9}-\sqrt{12}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
d) \(\dfrac{\sqrt{6-2\sqrt{5}}}{\sqrt{5}-1}\)
Rút gọn
\(\frac{3\sqrt{8}-2\sqrt{12}+\sqrt{40}}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}\)
Rút gọn các biểu thức
\(B=\frac{9\sqrt{5}+3\sqrt{27}}{\sqrt{5}+\sqrt{3}} \)
\(C=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(D=\frac{3\sqrt{8}-2\sqrt{12}+20}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}\)
rút gọn các căn thức sau
B=\(\frac{\sqrt{5-\sqrt{3}}-\sqrt{5+\sqrt{3}}}{\sqrt{5-\sqrt{22}}}+\sqrt{27+10\sqrt{2}}\)C= \(\frac{\sqrt{45+27\sqrt{2}}+\sqrt{45-27\sqrt{2}}}{\sqrt{5+3\sqrt{2}}-\sqrt{5-3\sqrt{2}}}-\frac{\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}}{\sqrt{3+\sqrt{2}}-\sqrt{3-\sqrt{2}}}\)D=\(\frac{1}{\sqrt{2}-\sqrt{3}}.\sqrt{\frac{3\sqrt{2}-2\sqrt{3}}{3\sqrt{2}+2\sqrt{3}}}\)A= \(\frac{1}{\sqrt{3+2\sqrt{2}}}+\frac{1}{\sqrt{5+2\sqrt{6}}}+\frac{1}{\sqrt{7+2\sqrt{12}}}+....+\frac{1}{\sqrt{199+2\sqrt{9900}}}\)Rút gọn biểu thức
I=(2\(\sqrt{3}\)-5\(\sqrt{27}\)+4\(\sqrt{12}\)):\(\sqrt{3}\)
K=\(\sqrt{125}\)-4\(\sqrt{45}\)+3\(\sqrt{20}\)-\(\sqrt{80}\)
L=2\(\sqrt{9}\)+\(\sqrt{25}\)-5\(\sqrt{4}\)
N=2\(\sqrt{32}\)-5\(\sqrt{27}\)-4\(\sqrt{8}\)+3\(\sqrt{75}\)
O=2\(\sqrt{3.5^2}\)-3\(\sqrt{3.2^2}\)+\(\sqrt{3.3^2}\)
Rút gọn biểu thức sau :
1) \(\sqrt{\frac{4}{3}}-\frac{\sqrt{24}}{2\sqrt{2}}+\frac{3}{\sqrt{27}}\)
2) \(4\sqrt{20}-3\sqrt{125}+5\sqrt{45}-15\sqrt{\frac{1}{5}}\)
3) \(\sqrt{343a}+\sqrt{63a}-\sqrt{28a}\left(a\ge0\right)\)
4) \(\left(7\sqrt{48}+3\sqrt{27}-2\sqrt{12}\right):\sqrt{3}\)
Giúp mik vs
Giúp mình với !
1. Rút gọn
a)\(\frac{\sqrt{6}+\sqrt{10}}{\sqrt{21}+\sqrt{35}}\)
b) \(\frac{\sqrt{450}+3\sqrt{27}}{3\sqrt{3}+\sqrt{45}}\)
c) \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}-\sqrt{6}-\sqrt{9}-\sqrt{12}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
d) \(\frac{\sqrt{6-2\sqrt{5}}}{\sqrt{5}-1}\)
1. Rút gọn biểu thức:
\(D=\frac{1}{2}\sqrt{48}-2\sqrt{75}-\frac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\frac{1}{3}}\)
2. Thực hiện phép tính rồi rút gọn:
\(A=\left(\sqrt{32}-\sqrt{50}+\sqrt{27}\right).\left(\sqrt{27}+\sqrt{50}-\sqrt{32}\right)\)
\(B=1-\left(\sqrt{45}-\sqrt{20}-\sqrt{3}\right).\left(\sqrt{20}-\sqrt{45}-\sqrt{3}\right)\)