\(=\frac{4\left(1-\sqrt{5}\right)\left(\sqrt{2}+\sqrt{10}\right)}{2-10}\)
\(=\frac{4\left(\sqrt{2}+\sqrt{10}-\sqrt{10}-5\sqrt{2}\right)}{-8}\)
\(=\frac{-\left(-4\sqrt{2}\right)}{2}\)
\(=\frac{4\sqrt{2}}{2}=2\sqrt{2}\)
tick cho mình nha
\(=\frac{4\left(1-\sqrt{5}\right)\left(\sqrt{2}+\sqrt{10}\right)}{2-10}\)
\(=\frac{4\left(\sqrt{2}+\sqrt{10}-\sqrt{10}-5\sqrt{2}\right)}{-8}\)
\(=\frac{-\left(-4\sqrt{2}\right)}{2}\)
\(=\frac{4\sqrt{2}}{2}=2\sqrt{2}\)
tick cho mình nha
rút gọn Q= ($\frac{\sqrt{x+2} }{x-2\sqrt{x}+4 }$ - $\frac{x-\sqrt{x} }{x\sqrt{x} +8 }$ ). $\frac{5x-10\sqrt{x}+20 }{5\sqrt{x}+4}$
Rút gọn
A= \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
B= \(\frac{1}{1+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+\frac{1}{\sqrt{9}+\sqrt{13}}+...+\frac{1}{\sqrt{2001}+\sqrt{2005}}\)
Rút gọn căn thức :
A = \(\frac{\sqrt{10}+2\sqrt{6}+\sqrt{10}.\sqrt{4+\sqrt{15}}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\)\(\frac{\sqrt{10}+2\sqrt{6}+\sqrt{10}.\sqrt{4+\sqrt{15}}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\)
rút gọn \(\frac{\sqrt[4-4]{5}}{\sqrt{10}-\sqrt{2}}\)
Rút gọn biểu thức:
a,\(\frac{3+\sqrt{5}}{\sqrt{10}+\sqrt{3+\sqrt{5}}}-\frac{3-\sqrt{5}}{\sqrt{10}+\sqrt{3-\sqrt{5}}}\)
\(b,\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)
Rút gọn :
A= \(\frac{\sqrt{10}+2\sqrt{6}+\sqrt{10}.\sqrt{4+\sqrt{15}}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\)
\(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\) rút gọn
Trục căn thức ở mẫu và rút gọn:
a) \(\frac{20}{3+\sqrt{5}+\sqrt{2+2\sqrt{5}}}\)
b) \(\frac{\sqrt{15-10\sqrt{2}}+\sqrt{13+4\sqrt{10}}-\sqrt{11+2\sqrt{10}}}{2.\sqrt{3+2\sqrt{5}}+\sqrt{9-4\sqrt{2}}+\sqrt{12+8\sqrt{2}}}\)
Rút gọn \(\frac{\sqrt{7-2\sqrt{10}}\left(7+2\sqrt{10}\right)\left(74-22\sqrt{10}\right)}{\sqrt{125}-4\sqrt{50}+5\sqrt{20}+\sqrt{8}}\)