\(A=\frac{10^{29}+10^{10}}{10^{30}+10^{10}}=\frac{10^{10}.\left(10^{19}+1\right)}{10^{10}.\left(10^{20}+1\right)}=\)\(\frac{10^{19}+1}{10^{20}+1}\)
\(\Leftrightarrow10A=1+\frac{9}{10^{20}+1}\)
\(B=\frac{10^{30}+10^{10}}{10^{31}+10^{10}}=\frac{10^{10}.\left(10^{20}+1\right)}{10^{10}.\left(10^{21}+1\right)}=\frac{10^{20}+1}{10^{21}+1}\)
\(\Leftrightarrow10B=1+\frac{9}{10^{21}+1}\)
Vì \(1+\frac{9}{10^{20}+1}>1+\frac{9}{10^{21}+1}\Rightarrow10A>10B\Leftrightarrow A>B\)