ta có B=2+\(\frac{x}{x-2}\)- \(\frac{4x^2}{x^2-4}\)- \(\frac{2-x}{x+2}\)
=\(\frac{2\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{4x^2}{\left(x-2\right)\left(x+2\right)}-\frac{\left(x-2\right)\left(2-x\right)}{\left(x-2\right)\left(x+2\right)}\)
=\(\frac{2\left(x-2\right)\left(x+2\right)+x\left(x+2\right)-4x^2-\left(x-2\right)\left(2-x\right)}{\left(x-2\right)\left(x+2\right)}\)
=\(\frac{\left(x+2\right)\left\{2\left(x-2\right)+x\right\}-\left\{4x^2-\left(x-2\right)^2\right\}}{\left(x-2\right)\left(x+2\right)}=\frac{\left(x+2\right)\left(3x-4\right)-\left(2x-x+2\right)\left(2x+x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
=\(\frac{\left(x+2\right)\left(3x-4\right)-\left(x+2\right)\left(3x-2\right)}{\left(x-2\right)\left(x+2\right)}\)=\(\frac{\left(x+2\right)\left(3x-4-3x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
=\(\frac{-2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)=\(\frac{-2}{x-2}\)