\(M=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)+\sqrt{x}}{x-1}:\dfrac{2\left(\sqrt{x}+1\right)-2+x}{x\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x+2\sqrt{x}}{x-1}\cdot\dfrac{x\left(\sqrt{x}+1\right)}{2\sqrt{x}+2-2+x}\)
\(=\dfrac{x\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{x+2\sqrt{x}}{x+2\sqrt{x}}=\dfrac{x}{\sqrt{x}-1}\)
\(M=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right):\left(\dfrac{2}{x}-\dfrac{2-x}{x\sqrt{x}+x}\right)\)
\(=\left(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{2\left(\sqrt{x}+1\right)}{x\left(\sqrt{x}+1\right)}-\dfrac{2-x}{x\left(\sqrt[]{x}+1\right)}\right)\)
\(=\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{x+2\sqrt{x}}{x\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x}{\sqrt{x}-1}\)