Bài 2: Căn thức bậc hai và hằng đẳng thức căn bậc hai của bình phương

H24

Rút gọn :\(\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{1-a}\right)^2\) với a >0 ;a ≠0

NH
12 tháng 8 2020 lúc 7:19

ĐKXĐ : \(\left\{{}\begin{matrix}a>0\\a\ne0\end{matrix}\right.\)

Ta có :

\(\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{1-a}\right)^2\)

\(=\left(\frac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}+\sqrt{a}\right).\frac{\left(1-\sqrt{a}\right)^2}{\left(1-a\right)^2}\)

\(=\left(1+2\sqrt{a}+a\right).\frac{\left(1-\sqrt{a}\right)^2}{\left(1-\sqrt{a}\right)^2\left(1+\sqrt{a}\right)^2}\)

\(=\left(\sqrt{a}+1\right)^2.\frac{\left(1-\sqrt{a}\right)^2}{\left(1-\sqrt{a}\right)^2\left(1+\sqrt{a}\right)^2}\)

\(=1\)

Vậy...

Bình luận (0)