\(=\dfrac{2+\sqrt{\left(1-x\right)\left(1+x\right)}}{\sqrt{1+x}}:\dfrac{2+\sqrt{1-x^2}}{\sqrt{1-x^2}}\)
\(=\dfrac{2+\sqrt{1-x^2}}{\sqrt{1+x}}\cdot\dfrac{\sqrt{1-x^2}}{2+\sqrt{1-x^2}}\)
\(=\sqrt{\dfrac{1-x^2}{1+x}}=\sqrt{1-x}\)
\(=\dfrac{2+\sqrt{\left(1-x\right)\left(1+x\right)}}{\sqrt{1+x}}:\dfrac{2+\sqrt{1-x^2}}{\sqrt{1-x^2}}\)
\(=\dfrac{2+\sqrt{1-x^2}}{\sqrt{1+x}}\cdot\dfrac{\sqrt{1-x^2}}{2+\sqrt{1-x^2}}\)
\(=\sqrt{\dfrac{1-x^2}{1+x}}=\sqrt{1-x}\)
Rút gọn biểu thức A = \(\left(\dfrac{1}{\sqrt{x-1}}+\dfrac{1}{\sqrt{x+1}}\right):\left(\dfrac{1}{\sqrt{x-1}}-\dfrac{1}{\sqrt{x+1}}\right)\) với \(x=\dfrac{a^2+b^2}{2ab}\)
Rút gọn biểu thức dạng chữ:
Q=\(\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right).\left(x+\sqrt{x}\right)\) với x ≥0, x ≠1
A= \(A=\left(\dfrac{1}{\sqrt{x}-2}-\dfrac{1}{\sqrt{x}+2}+\dfrac{4\sqrt{x}}{4-x}\right):\dfrac{\sqrt{x}+1}{x-4}\) với x ≥0, x ≠ 4
\(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\right):\dfrac{1}{x+6\sqrt{x}+9}\) với x ≥ 0, x ≠ 9
Hộ vs ạ
Rút gọn biểu thức:
1, \(B=\left(\dfrac{x.\sqrt{x}+x+\sqrt{x}}{x.\sqrt{x}-1}-\dfrac{\sqrt{x}+3}{1-\sqrt{x}}\right).\dfrac{x-1}{2x+\sqrt{x}-1}\)với x>-0, x khác 1, x khác \(\dfrac{1}{4}\)
2, \(A=\dfrac{\left(\sqrt{x}-1\right)^2.\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{3\sqrt{x}+1}{x-1}\) với x\(\ge\)0:x\(\ne\)0
Cho biểu thức P = \(\dfrac{3\left(x+2\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\) ( với x ≥ 0; x ≠ 1 )
a,Rút gọn biểu thức P
b,Tính giá trị của P khi x = \(6-2\sqrt{5}\)
Rút gọn Biểu thức sau:
\(P=\left(\dfrac{1}{2\sqrt{x}}-\dfrac{\sqrt{x}}{2}\right)^2.\left(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\right)\)với x lớn hơn 0 và x khác 1
Cho biểu thức P= \(\left(\dfrac{2\sqrt{x}+x}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right):\left(1-\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\)
Rút gọn biểu thức trên
RÚT GỌN BIỂU THỨC:
19) \(A = \left(\dfrac{1}{\sqrt{x}} - \dfrac{1}{\sqrt{x} - 1}\right) : \left(\dfrac{\sqrt{x} + 2}{\sqrt{x} - 1} - \dfrac{\sqrt{x} + 1}{\sqrt{x} - 2}\right)\)
Rút gọn biểu thức
\(\left(\dfrac{1}{\sqrt{x}+2}-\dfrac{1}{\sqrt{x}}\right)\left(\dfrac{2}{\sqrt{x}}+1\right)\) (x>0)
a. rút gọn biểu thức B
b.tìm x để biểu thức M=A.b nhận giá trị nguyên
B=\(B=\dfrac{\sqrt{X}+1}{\sqrt{X}-2}+\dfrac{\sqrt{X}+2}{1-\sqrt{X}}+\dfrac{\sqrt{X}-4}{\left(\sqrt{X}-1\right)\left(\sqrt{X}-2\right)}\)