PA

rút gọn biểu thức A=\(\dfrac{x+\sqrt{y}+\sqrt{xy}-1}{\sqrt{x}+1}:(\sqrt{x}-\sqrt{y})\)

AH
28 tháng 1 2024 lúc 20:01

Lời giải:

\(A=\frac{(x-1)+(\sqrt{y}+\sqrt{xy})}{\sqrt{x}+1}.\frac{1}{\sqrt{x}-\sqrt{y}}\\ =\frac{(\sqrt{x}-1)(\sqrt{x}+1)+\sqrt{y}(\sqrt{x}+1)}{\sqrt{x}+1}.\frac{1}{\sqrt{x}-\sqrt{y}}\\ =\frac{(\sqrt{x}+1)(\sqrt{x}-1+\sqrt{y})}{\sqrt{x}+1}.\frac{1}{\sqrt{x}-\sqrt{y}}\\ =\frac{\sqrt{x}+\sqrt{y}-1}{\sqrt{x}-\sqrt{y}}\)

Bình luận (0)
NT
28 tháng 1 2024 lúc 20:06

\(A=\dfrac{x+\sqrt{y}+\sqrt{xy}-1}{\sqrt{x}+1}:\left(\sqrt{x}-\sqrt{y}\right)\)

\(=\dfrac{\left(x-1\right)+\sqrt{y}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}:\left(\sqrt{x}-\sqrt{y}\right)\)

\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)+\sqrt{y}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}:\left(\sqrt{x}-\sqrt{y}\right)\)

\(=\dfrac{\left(\sqrt{x}-1+\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}\)

 

Bình luận (0)

Các câu hỏi tương tự
QN
Xem chi tiết
NN
Xem chi tiết
MV
Xem chi tiết
DV
Xem chi tiết
NM
Xem chi tiết
VP
Xem chi tiết
LL
Xem chi tiết
NT
Xem chi tiết
NL
Xem chi tiết