\(A=1+3+3^2+3^3+...+3^{20}\)
=> \(3A=3+3^2+3^3+3^4+...+3^{21}\)
=> \(3A-A=3^{21}-1\)
=> \(2A=3^{21}-1\)
=> \(A=\frac{3^{21}-1}{2}\)
\(A=1+3+3^2+3^3+...+3^{20}\)
\(\Rightarrow A=3^0+3^1+3^2+3^3+...+3^{20}\)
\(\Rightarrow A=3^{\left(1+2+3+...+20\right)}\)
Ta có:
\(1+2+3+...+20\)
Số số hạng: \(\left(20-1\right):1+1=20\)
Tổng là: \(\left(1+20\right)\cdot20:2=210\)
\(\Rightarrow A=3^{210}\)
\(A=1+3+3^2+...+3^{20}\)
\(\Rightarrow3A=3+3^2+3^3+....+3^{21}\)
\(\Rightarrow3A-A=\left(3+3^2+3^3+...+3^{21}\right)-\left(1+3+3^2+...+3^{20}\right)\)
\(\Rightarrow2A=3^{21}-1\Rightarrow A=\frac{3^{21}-1}{2}\)