H24

Rút gọn B

\(B=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{5\sqrt{x}+2}{4-x}\)

H24
12 tháng 5 2021 lúc 8:36

\(B=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{5\sqrt{x}+2}{4-x}(x \geq 0,x \neq 4)\)
`=(x+3\sqrtx+2+2x-4\sqrtx-5\sqrtx-2)/(x-4)`
`=(3x-6\sqrtx)/(x-4)`
`=(3\sqrtx(\sqrtx-2))/((\sqrtx-2)(\sqrtx+2))`
`=(3\sqrtx)/(\sqrtx+2)`

Bình luận (0)
TC
12 tháng 5 2021 lúc 8:41

B = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{5\sqrt{x}+2}{4-x}\) Đk: \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)

    = \(\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)+2\sqrt{x}\left(\sqrt{x}-2\right)-5\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

    = \(\dfrac{x+3\sqrt{x}+2+2x-4\sqrt{x}-5\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

    = \(\dfrac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

    = \(\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

    = \(\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)

Vậy B = \(\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)  với \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
HA
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
DA
Xem chi tiết
FJ
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
MV
Xem chi tiết