H24

rút gọn: (b-c)3+(c-a)3-(a-b)3-3(a-b)(b-c)(c-a)

NT
23 tháng 7 2021 lúc 11:45

Ta có: \(\left(b-c\right)^3+\left(c-a\right)^3-\left(a-b\right)^3-3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

\(=\left(b-c+c-a\right)\left[\left(b-c\right)^2-\left(b-c\right)\left(c-a\right)+\left(c-a\right)^2\right]-\left(a-b\right)\left[1+3\left(b-c\right)\left(c-a\right)\right]\)

\(=\left(b-a\right)\left(b^2-3bc+3c^2+ab-3ac+a^2\right)-\left(a-b\right)\left(1+3bc-3ab-3c^2+3ac\right)\)

\(=\left(b-a\right)\left(b^2-3bc+3c^2+ab-3ac+a^2+1+3bc-3ab-3c^2+3ac\right)\)

\(=\left(b-a\right)\left(b^2-2ab+a^2+1\right)\)

\(=\left(b-a\right)^3+\left(b-a\right)\)

\(=b^3-3b^2a+3ba^2-a^3+b-a\)

Bình luận (0)

Các câu hỏi tương tự
TD
Xem chi tiết
NL
Xem chi tiết
ND
Xem chi tiết
TD
Xem chi tiết
QP
Xem chi tiết
LM
Xem chi tiết
PT
Xem chi tiết
NH
Xem chi tiết
NQ
Xem chi tiết