Bài 8: Rút gọn biểu thức chứa căn bậc hai

H24

Rút gọn:

\(A=\left(\frac{2x\sqrt{x}+x-\sqrt{x}}{x\sqrt{x}-1}-\frac{x+\sqrt{x}}{x-1}\right).\frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)

Giúp mình với mình đang cần gấp!!!!!!!!!!!!!!!!!!!!!!

TP
7 tháng 8 2019 lúc 9:38

\(A=\left(\frac{2x\sqrt{x}+x-\sqrt{x}}{x\sqrt{x}-1}-\frac{x+\sqrt{x}}{x-1}\right)\cdot\frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)

\(A=\left[\frac{\sqrt{x}\left(2x+\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right]\cdot\frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)

\(A=\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(2x+\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x+\sqrt{x}+1\right)}-\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x+\sqrt{x}+1\right)}\right)\cdot\frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)

\(A=\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(2x+\sqrt{x}-1-x-\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x+\sqrt{x}+1\right)}\cdot\frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)

\(A=\frac{\sqrt{x}\left(x-2\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)

\(A=\frac{\sqrt{x}\left(x-2\right)\left(\sqrt{x}+1\right)}{\left(x+\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)

\(A=\frac{\sqrt{x}\left(x-2\right)}{\left(2\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\sqrt{x}\left(x+\sqrt{x}+1\right)}{\left(2\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(A=\frac{x\sqrt{x}-2\sqrt{x}+x\sqrt{x}+x+\sqrt{x}}{\left(2\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(A=\frac{2x\sqrt{x}-\sqrt{x}+x}{\left(2\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(A=\frac{\sqrt{x}\left(2x+\sqrt{x}-1\right)}{\left(2\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(A=\frac{\sqrt{x}\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(2\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(A=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{x+\sqrt{x}+1}\)

Bình luận (0)

Các câu hỏi tương tự
HP
Xem chi tiết
HP
Xem chi tiết
HT
Xem chi tiết
HA
Xem chi tiết
NN
Xem chi tiết
HT
Xem chi tiết
TM
Xem chi tiết
VA
Xem chi tiết
VV
Xem chi tiết